A Comparative Study of Terrestrial Laser Scanning and Photogrammetry: Accuracy and Applications
Abstract
Doi: 10.28991/CEJ-2025-011-03-021
Full Text: PDF
Keywords
References
O’Driscoll, J. (2018). Landscape applications of photogrammetry using unmanned aerial vehicles. Journal of Archaeological Science: Reports, 22, 32–44. doi:10.1016/j.jasrep.2018.09.010.
Galantucci, R. A., & Fatiguso, F. (2019). Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis. Journal of Cultural Heritage, 36, 51–62. doi:10.1016/j.culher.2018.09.014.
Van Genderen, J. L. (2011). Airborne and terrestrial laser scanning. International Journal of Digital Earth, 4(2), 183–184. doi:10.1080/17538947.2011.553487.
El-Din Fawzy, H., Basha, A. M., & Botross, M. N. (2020). Estimating a mathematical formula of soil erosion under the effect of rainfall simulation by digital close range photogrammetry technique. Alexandria Engineering Journal, 59(6), 5079–5097. doi:10.1016/j.aej.2020.09.039.
El-Din Fawzy, H. (2019). 3D laser scanning and close-range photogrammetry for buildings documentation: A hybrid technique towards a better accuracy. Alexandria Engineering Journal, 58(4), 1191–1204. doi:10.1016/j.aej.2019.10.003.
El-Din Fawzy, H. (2019). Study the accuracy of digital close range photogrammetry technique software as a measuring tool. Alexandria Engineering Journal, 58(1), 171–179. doi:10.1016/j.aej.2018.04.004.
Abd-Elmaaboud, A., El-Tokhey, M., Ragheb, A., & Mogahed, Y. (2019). Comparative assessment of terrestrial laser scanner against traditional surveying methods. International Journal of Engineering and Applied Sciences (IJEAS), 6, 79-84.
Solomon, D. C. (2014). Surveying with GPS, total station and terrestrial laser scanner: a comparative study. Royal Institute of Technology, Stockholm, Sweden. Master Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
Beraldin, J. A. (2004). Integration of laser scanning and close-range photogrammetry–The last decade and beyond. Proceedings of the XXth ISPRS Congress, 12-23 July, 2004, Istanbul, Turkey.
Velios, A., Harrison, J.P., (2001). Laser scanning and digital close range photogrammetry for capturing 3D archaeological objects: a comparison of quality and practicality. Archaeological Informatics: Pushing the Envelope, CAA 2001, Oxford, United States.
Brown, D.C. (1971) Close-Range Camera Calibration. Photogrammetric Engineering, 37, 855-866.
Alkan, R. M., & Karsidag, G. (2012). Analysis of the accuracy of terrestrial laser scanning measurements. FIG Working week, knowing to manage the territory, protect the environment, evaluate the cultural heritage, 6-10 May, 2012, Rome, Italy.
Brzeziński, K., Maślakowski, M., & Liszewski, P. (2018). Evaluation of the Volume Measurement Optical Method Suitability for Determining the Relative Compaction of Soils. Civil Engineering Journal, 4(9), 2052. doi:10.28991/cej-03091138.
Alqahtani, T. (2024). Assessing Geospatial Accuracy in Mapping Applications: A Focus on Google Earth. Civil Engineering Journal (Iran), 10(8), 2615–2630. doi:10.28991/CEJ-2024-010-08-012.
Gaong, G. E. A., Idris, A. N., Luh, L. C., Ab Rahman, A. A., Wan Mohamed Sabri, W. M. S., & Abdul Jalil, A. H. (2025). Comparative Evaluation of 3D Building Model Using UAV Photogrammetry and Terrestrial Laser Scanner (TLS). Built Environment Journal, 22(1), 1066. doi:10.24191/bej.v22i1.1066.
Salah, M., Farhan, M., Basha, A., & Sherif, M. (2024). Filtering of 3D point clouds using maximum likelihood algorithm. Discover Applied Sciences, 6(8), 419. doi:10.1007/s42452-024-05976-1.
Borkowski, A. S., & Kubrat, A. (2024). Integration of Laser Scanning, Digital Photogrammetry and BIM Technology: A Review and Case Studies. Eng, 5(4), 2395–2409. doi:10.3390/eng5040125.
Bori, M. M., & Hussein, Z. E. (2020). Integration the low cost camera images with the Google earth dataset to create a 3D model. Civil Engineering Journal (Iran), 6(3), 446–458. doi:10.28991/cej-2020-03091482.
Basha, A. M., Zakaria, M. H., El-Nimr, M. T., & Abo-Raya, M. M. (2024). Predicting the Maximum Axial Capacity of Secant Pile Walls Embedded in Sandy Soil. Geotechnical and Geological Engineering, 42(5), 3373–3400. doi:10.1007/s10706-023-02734-9.
PhotoModeler (2009). PhotoModeler UAS User’s Manual. Eos Systems Inc., Vancouver, Canada.
Hu, J., Liu, E., & Yu, J. (2021). Application of Structural Deformation Monitoring Based on Close-Range Photogrammetry Technology. Advances in Civil Engineering, 2021, 1–11. doi:10.1155/2021/6621440.
Detchev, I., Habib, A., & El-Badry, M. (2012). Estimation of Vertical Deflections in Concrete Beams through Digital Close Range Photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, 219–224. doi:10.5194/isprsarchives-xxxviii-5-w12-219-2011.
Li, J., Su, J., & Zeng, X. (2019). A solution method for image distortion correction model based on bilinear interpolation. Computer Optics, 43(1), 99–104. doi:10.18287/2412-6179-2019-43-1-99-104.
Ji, Y., & Wu, J. (2019). Calibration method of light-field camera for photogrammetry application. Measurement: Journal of the International Measurement Confederation, 148, 148 106943. doi:10.1016/j.measurement.2019.106943.
Pepe, M., & Costantino, D. (2020). Techniques, tools, platforms and algorithms in close range photogrammetry in building 3D model and 2D representation of objects and complex architectures. Computer-Aided Design and Applications, 18(1), 42–65. doi:10.14733/cadaps.2021.42-65.
Maas, H. G., & Hampel, U. (2006). Programmetric techniques in civil engineering material testing and structure monitoring. Photogrammetric Engineering and Remote Sensing, 72(1), 39–45. doi:10.14358/PERS.72.1.39.
Kim, H. G., & Yun, H. S. (2016). Shape deformation monitoring for VLBI antenna using close-range photogrammetry and total least squares. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(1), 99–107. doi:10.7848/ksgpc.2016.34.1.99.
Luhmann, T., Robson, S., Kyle, S., & Boehm, J. (2023). Close-range photogrammetry and 3D imaging. Walter de Gruyter GmbH, Berlin, Germany.
Salehi, B., & Jarahizadeh, S. (2022). Improving the UAV-Derived DSM by Introducing a Modified Ransac Algorithm. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 147–152. doi:10.5194/isprs-archives-xliii-b2-2022-147-2022.
DOI: 10.28991/CEJ-2025-011-03-021
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mohamed Hamed Zakaria, Hossam Fawzy, Mohammed El-Beshbeshy, Magda Farhan

This work is licensed under a Creative Commons Attribution 4.0 International License.