Dynamic Analysis of MICP-Stabilized Soil and Liquefiable Soil With Varying Salinity Levels
Abstract
Doi: 10.28991/CEJ-2025-011-04-010
Full Text: PDF
Keywords
References
Amipour, S., Khashila, M., Bayoumi, A., Karray, M., & Chekired, M. (2022). Specimens size effect D/H on cyclic behaviour and liquefaction potential of clean sand. Acta Geotechnica, 17(5), 2047–2057. doi:10.1007/s11440-021-01339-x.
Farooq, M. A., & Nimbalkar, S. (2024). Monotonic and cyclic triaxial testing of untreated and polyurethane-treated soil and soil–rubber mixtures. Acta Geotechnica, 19(2), 605–630. doi:10.1007/s11440-023-02100-2.
Khashila, M., Hussien, M. N., Chekired, M., & Karray, M. (2021). On the Dynamic Soil Behavior under Triaxial and Simple Shear Modes. International Journal of Geomechanics, 21(8), 04021134. doi:10.1061/(asce)gm.1943-5622.0002085.
Wang, W., He, X., Wu, S., & Chu, J. (2024). Presence of Mg-calcite and its influence on MICP and EICP processes. Journal of Rock Mechanics and Geotechnical Engineering, 1-12. doi:10.1016/j.jrmge.2024.09.045.
Smitha, S., & Rangaswamy, K. (2020). Effect of Biopolymer Treatment on Pore Pressure Response and Dynamic Properties of Silty Sand. Journal of Materials in Civil Engineering, 32(8), 04020217. doi:10.1061/(asce)mt.1943-5533.0003285.
Smitha, S., Rangaswamy, K., & Keerthi, D. S. (2021). Triaxial test behaviour of silty sands treated with agar biopolymer. International Journal of Geotechnical Engineering, 15(4), 484–495. doi:10.1080/19386362.2019.1679441.
Kassas, K., Adamidis, O., & Anastasopoulos, I. (2021). Shallow strip foundations subjected to earthquake-induced soil liquefaction: Validation, modelling uncertainties, and boundary effects. Soil Dynamics and Earthquake Engineering, 147, 106719. doi:10.1016/j.soildyn.2021.106719.
Zhu, L., Yang, Q., Luo, L., & Cui, S. (2022). Pore-Water Pressure Model for Carbonate Fault Materials Based on Cyclic Triaxial Tests. Frontiers in Earth Science, 10, 1–12. doi:10.3389/feart.2022.842765.
Zhu, M., Kong, F., Li, Y., Li, M., Zhang, J., & Xi, M. (2020). Effects of moisture and salinity on soil dissolved organic matter and ecological risk of coastal wetland. Environmental Research, 187, 109659. doi:10.1016/j.envres.2020.109659.
Rifa’i, A., Fathani, T. F., & Adi, A. D. (2024). Post-Earthquake Liquefaction Vulnerability Mapping by Swedish Weight Sounding and Standard Penetration Test. Civil Engineering Journal, 10(7), 2216-2232. doi:10.28991/CEJ-2024-010-07-09.
Xu, K., Huang, M., Liu, Z., Cui, M., & Li, S. (2023). Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles. Biogeotechnics, 1(2), 100019. doi:10.1016/j.bgtech.2023.100019.
Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), 100002. doi:10.1016/j.bgtech.2023.100002.
Yu, X., Tan, Y., Song, W., Kemeny, J., Qi, S., Zheng, B., & Guo, S. (2024). Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading. Journal of Rock Mechanics and Geotechnical Engineering, 16(2), 597–615. doi:10.1016/j.jrmge.2023.11.015.
Voyagaki, E., Kishida, T., Aldulaimi, R. F., & Mylonakis, G. (2023). Integration and calibration of UBCSAND model for drained monotonic and cyclic triaxial compression of aggregates. Soil Dynamics and Earthquake Engineering, 171, 107978. doi:10.1016/j.soildyn.2023.107978.
Wang, P., Zhang, N., Wei, Q., Xu, X., Cui, G., Li, A., Yang, S., & Kan, J. (2024). Mechanical responses of anchoring structure under triaxial cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 16(2), 545–560. doi:10.1016/j.jrmge.2023.04.020.
Molina-Gómez, F., Viana da Fonseca, A., Ferreira, C., & Caicedo, B. (2023). Improvement of cyclic liquefaction resistance induced by partial saturation: An interpretation using wave-based approaches. Soil Dynamics and Earthquake Engineering, 167, 107819. doi:10.1016/j.soildyn.2023.107819.
Jain, A., Mittal, S., & Shukla, S. K. (2023). Liquefaction proneness of stratified sand-silt layers based on cyclic triaxial tests. Journal of Rock Mechanics and Geotechnical Engineering, 15(7), 1826-1845. doi:10.1016/j.jrmge.2022.09.015.
Diana, N. A., Soemitro, R. A. A., Ekaputri, J. J., Satrya, T. R., & Warnana, D. D. (2024). The influence of variations in salinity levels on the biocementing process on soil improvement of liquefaction potential. IOP Conference Series: Earth and Environmental Science, 1372(1), 012071. doi:10.1088/1755-1315/1372/1/012071.
Song, Z., Wu, C., Li, Z., & Shen, D. (2024). Fracture sealing based on microbially induced carbonate precipitation and its engineering applications: A review. Biogeotechnics, 2(4), 100100. doi:10.1016/j.bgtech.2024.100100.
Weng, Y., Lai, H., Zheng, J., Cui, M., Chen, Y., Xu, Z., Jiang, W., Zhang, J., & Song, Y. (2024). Effect of acid type on biomineralization of soil using crude soybean urease solution. Journal of Rock Mechanics and Geotechnical Engineering, 5135-5146. doi:10.1016/j.jrmge.2024.09.017.
Kuo, C. H., Huang, J. Y., Lin, C. M., Chen, C. Te, & Wen, K. L. (2021). Near-surface frequency-dependent nonlinear damping ratio observation of ground motions using SMART1. Soil Dynamics and Earthquake Engineering, 147, 106798. doi:10.1016/j.soildyn.2021.106798.
Wang, Y., Soga, K., DeJong, J. T., & Kabla, A. J. (2021). Effects of Bacterial Density on Growth Rate and Characteristics of Microbial-Induced CaCO3 Precipitates: Particle-Scale Experimental Study. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021036. doi:10.1061/(asce)gt.1943-5606.0002509.
Mijic, Z., Bray, J. D., Riemer, M. F., Rees, S. D., & Cubrinovski, M. (2021). Cyclic and monotonic simple shear testing of native Christchurch silty soil. Soil Dynamics and Earthquake Engineering, 148, 106834. doi:10.1016/j.soildyn.2021.106834.
Quintero, J., Gomes, R. C., Rios, S., Ferreira, C., & Viana da Fonseca, A. (2023). Liquefaction assessment based on numerical simulations and simplified methods: A deep soil deposit case study in the Greater Lisbon. Soil Dynamics and Earthquake Engineering, 169. doi:10.1016/j.soildyn.2023.107866.
Peellage, W. H., Fatahi, B., & Rasekh, H. (2023). Assessment of cyclic deformation and critical stress amplitude of jointed rocks via cyclic triaxial testing. Journal of Rock Mechanics and Geotechnical Engineering, 15(6), 1370–1390. doi:10.1016/j.jrmge.2023.02.001.
Dejong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L. A., AL Qabany, A., Aydilek, A., Bang, S. S., Burbank, M., Caslake, L. F., Chen, C. Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., … Weaver, T. (2013). Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Geotechnique, 63(4), 287–301. doi:10.1680/geot.SIP13.P.017.
Yang, C., Lv, D., Jiang, S., Lin, H., Sun, J., Li, K., & Sun, J. (2021). Soil salinity regulation of soil microbial carbon metabolic function in the Yellow River Delta, China. Science of the Total Environment, 790, 148258. doi:10.1016/j.scitotenv.2021.148258.
Diana, N. A., Soemitro, R. A. A., Ekaputri, J. J., Satrya, T. R., & Warnana, D. D. (2024). Evaluation of Liquefaction Risk Based on Soil Grain Size Characteristics and Standard Penetration Test (N-SPT) Resistance Results Case Study of Yogyakarta International Airport. Publication of Civil Engineering Orientation Research (Protection), 6(1), 51–58. doi:10.26740/proteksi.v6n1.p51-58. (In Indonesian).
Tsuchida, H. (1970). Prediction and countermeasure against the liquefaction in sand deposits. Abstract of the seminar in the Port and Harbor Research Institute, Kanagawa, Japan.
Miyamoto, M., Tuchida, H., Sakuraya, N., Omote, T., Iwasaki, H., & Namiki, A. (1988). Changes of liver function following prolonged general anesthesia. The Journal of Japan Society for Clinical Anesthesia, 8(3), 284-288.
Gitanjali Kennedy, A., Ge, L., & Jhuo, Y.-S. (2024). Experimental Study of Ground Improvement Using Enzyme Induced Calcite Precipitation (EICP). Japanese Geotechnical Society Special Publication, 10(51), 1918–1923. doi:10.3208/jgssp.v10.os-40-04.
Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022). Review of Strength Improvements of Biocemented Soils. International Journal of Geomechanics, 22(11), 1–23. doi:10.1061/(asce)gm.1943-5622.0002565.
Yao, C. R., Wang, B., Liu, Z. Q., Fan, H., Sun, F. H., & Chang, X. H. (2019). Evaluation of liquefaction potential in saturated sand under different drainage boundary conditions-An energy approach. Journal of Marine Science and Engineering, 7(11), 411. doi:10.3390/jmse7110411.
Zhang, J., Bilotta, E., Sun, Q., & Yuan, Y. (2024). Numerical simulation and parametric analysis on a shallow tunnel in liquefiable ground subject to multiple shakings. Soil Dynamics and Earthquake Engineering, 183, 108802. doi:10.1016/j.soildyn.2024.108802.
Liu, C., Yuan, Y., He, W., & Zhang, L. (2019). Durability analysis of seashore saline soil bound with a slag compound binder. Soils and Foundations, 59(5), 1456–1467. doi:10.1016/j.sandf.2019.06.005.
Mustafa, H., Maulana, A., Irfan, U. R., & Tonggiroh, A. (2023). The geoelectric approach to analyzing the profile of post-mining nickel laterite deposits in the Motui District, North Konawe Regency, Indonesia. IOP Conference Series: Earth and Environmental Science, 1134(1), 012035. doi:10.1088/1755-1315/1134/1/012035.
Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability (Switzerland), 12(15), 6281. doi:10.3390/SU12156281.
Lai, H., Ding, X., Cui, M., Zheng, J., Chu, J., Chen, Z., & Zhang, J. (2024). A new bacterial concentration method for large-scale applications of biomineralization. Journal of Rock Mechanics and Geotechnical Engineering, 16(12), 5109-5120. doi:10.1016/j.jrmge.2024.01.015.
DOI: 10.28991/CEJ-2025-011-04-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nur Ayu Diana, Ria Asih Aryani Soemitro, Januarti Jaya Ekaputri, Trihanyndio Rendy Satrya1, Dwa Desa Warnana

This work is licensed under a Creative Commons Attribution 4.0 International License.