Development of Airport Pavement Condition Evaluation Using Dominant Damage and Grid-Based Analysis

Aris Wibowo, Ade Sjafruddin, Bambang S. Subagio, Russ Bona Frazila

Abstract


Airport Pavement Condition Index (PCI) is a measure of pavement stability represented by an index ranging from 0 (failed) to 100 (best). The PCI evaluation procedure includes a series of steps, which are time-consuming and expensive. Therefore, this study aimed to propose an alternative PCI evaluation procedure that focused on major pavement damage using a grid-based system. The methods used in the analysis included discussions with expert panels and linear & nonlinear regression analysis. The results of the deduct value curve showed good statistical performance with an average RMSE of 1.80 and an average R² value of 0.85. The sample unit size with a grid system of 3×5 m² produced good accuracy with an average standard deviation of 7.89 at the study locations of PKY, TJQ, and TKG airports. Additionally, the PCI value decline model as a function of pavement age produced an estimated PCI decline of 3.23 per year. Grid-based PCI analysis was further proven to improve the accuracy of PCI values and consequently increased the efficiency of runway condition investigation time and costs by 27.30% compared to standard methods. Future studies were recommended to integrate this PCI evaluation procedure with a classification algorithm for airport pavement damage.

 

Doi: 10.28991/CEJ-2025-011-05-011

Full Text: PDF


Keywords


Pavement Condition Index; Deduct Value; Pavement Damage; Grid-Based Analysis.

References


Chen, X., Xuan, C., & Qiu, R. (2021). Understanding spatial spillover effects of airports on economic development: New evidence from China’s hub airports. Transportation Research Part A: Policy and Practice, 143, 48–60. doi:10.1016/j.tra.2020.11.013.

Mao, X., & Chen, X. (2023). Does airport construction narrow regional economic disparities in China? Journal of Air Transport Management, 108. doi:10.1016/j.jairtraman.2023.102362.

Uchida, K., Kato, H., Murakami, J., & Takeuchi, W. (2024). Does new airport investment promote urban economic development?: Global evidence from nighttime light data. Transportation Research Part A: Policy and Practice, 180. doi:10.1016/j.tra.2023.103948.

Zhu, X., Wu, Y., Yang, Y., Pang, Y., Ling, H., & Zhang, D. (2024). Real-time risk assessment of aircraft landing based on finite element-virtual prototype-machine learning co-simulation on wet runways. International Journal of Transportation Science and Technology, 13, 77–90. doi:10.1016/j.ijtst.2023.11.007.

Ling, J., Yang, F., Zhang, J., Li, P., Uddin, M. I., & Cao, T. (2023). Water-film depth assessment for pavements of roads and airport runways: A review. Construction and Building Materials, 392. doi:10.1016/j.conbuildmat.2023.132054.

Miah, M. T., Oh, E., Chai, G., & Bell, P. (2020). An overview of the airport pavement management systems (APMS). International Journal of Pavement Research and Technology, 13(6), 581–590. doi:10.1007/s42947-020-6011-8.

Di Graziano, A., Ragusa, E., Marchetta, V., & Palumbo, A. (2021). Analysis of an Airport Pavement Management System during the Implementation Phase. KSCE Journal of Civil Engineering, 25(4), 1424–1432. doi:10.1007/s12205-021-1884-x.

Alabi, B. N. T., Saeed, T. U., Amekudzi-Kennedy, A., Keller, J., & Labi, S. (2021). Evaluation criteria to support cleaner construction and repair of airport runways: A review of the state of practice and recommendations for future practice. Journal of Cleaner Production, 312. doi:10.1016/j.jclepro.2021.127776.

Wesołowski, M., & Iwanowski, P. (2020). Evaluation of asphalt concrete airport pavement conditions based on the Airfield Pavement Condition Index (APCI) in scope of flight safety. Aerospace, 7(6), 78. doi:10.3390/AEROSPACE7060078.

Santos, B., Almeida, P. G., Feitosa, I., & Lima, D. (2020). Validation of an indirect data collection method to assess airport pavement condition. Case Studies in Construction Materials, 13, e00419. doi:10.1016/j.cscm.2020.e00419.

Pietersen, R. A., Beauregard, M. S., & Einstein, H. H. (2022). Automated method for airfield pavement condition index evaluations. Automation in Construction, 141, 141. doi:10.1016/j.autcon.2022.104408.

ASTM D5340-20. (2023). Standard Test Method for Airport Pavement Condition Index Surveys. ASTM International, Pennsylvania, United States. doi:10.1520/D5340-20.

Li, Y., Zou, Z., Zhang, J., & He, Y. (2023). Study on the evolution of airport asphalt pavement integrated distress based on association rule mining. Construction and Building Materials, 369, 369. doi:10.1016/j.conbuildmat.2023.130565.

Canestrari, F., & Ingrassia, L. P. (2020). A review of top-down cracking in asphalt pavements: Causes, models, experimental tools and future challenges. Journal of Traffic and Transportation Engineering, 7(5), 541–572. doi:10.1016/j.jtte.2020.08.002.

Cho, N. H., Kwon, H. J., Suh, Y. C., & Kim, J. (2022). Development of Korea Airport Pavement Condition Index for Panel Rating. Applied Sciences (Switzerland), 12(16), 8320. doi:10.3390/app12168320.

AC 150/5380-7B. (2014). Airport Pavement Management Program (PMP). Federal Aviation Administration, U.S. Department of Transportation, Washington, United States.

Park, H. W., Kim, J. M., Lee, J. H., Lee, D. S., & Jeong, J. H. (2023). Pavement Condition Index Model for Mechanistic–Empirical Design of Airport Concrete Pavements Considering Environmental Effects. Buildings, 13(10), 2512. doi:10.3390/buildings13102512.

AC 150/5320-6G. (2009). Airport Pavement Design and Evaluation. Federal Aviation Administration, U.S. Department of Transportation, Washington, United States.

Wei, B., & Guo, C. (2022). Predicting the Remaining Service Life of Civil Airport Runway considering Reliability and Damage Accumulation. Advances in Materials Science and Engineering, 6494812. doi:10.1155/2022/6494812.

Modarres, A., & Shabani, H. (2015). Investigating the effect of aircraft impact loading on the longitudinal top-down crack propagation parameters in asphalt runway pavement using fracture mechanics. Engineering Fracture Mechanics, 150, 28–46. doi:10.1016/j.engfracmech.2015.10.024.

Moayedfar, R., & Sajjadifard, A. (2021). Prioritization of pavement restoration and maintenance strategies in airports using APMS technique. International Journal of Pavement Research and Technology, 14(3), 327–333. doi:10.1007/s42947-020-0244-4.

Babashamsi, P., Khahro, S. H., Omar, H. A., Al-Sabaeei, A. M., Memon, A. M., Milad, A., Khan, M. I., Sutanto, M. H., & Yusoff, N. I. M. (2022). Perspective of Life-Cycle Cost Analysis and Risk Assessment for Airport Pavement in Delaying Preventive Maintenance. Sustainability (Switzerland), 14(5), 2905. doi:10.3390/su14052905.

R., T., M.U., A., & M.M., R. (2013). Evaluating Functional and Structural Condition Based Maintenances of Airfield Pavements. Civil Engineering Dimension, 15(2), 71-80. doi:10.9744/ced.15.2.71-80.

Zhao, H., Ma, L., Tang, L., Li, M., & Du, H. (2018). Maintenance Assistant Decision-Making Model of Civil Airport Cement Pavements Based on Data Mining. Journal of Tongji University, 46(12), 1676-1682. doi:10.11908/j.issn.0253-374x.2018.12.009.

Wang, W., Wang, M., Li, H., Zhao, H., Wang, K., He, C., Wang, J., Zheng, S., & Chen, J. (2019). Pavement crack image acquisition methods and crack extraction algorithms: A review. Journal of Traffic and Transportation Engineering (English Edition), 6(6), 535–556. doi:10.1016/j.jtte.2019.10.001.

Li, H. F., Wu, Z. L., Nie, J. J., Peng, B., & Gui, Z. C. (2020). Automatic crack detection algorithm for airport pavement based on depth image. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 20(6), 250–260. doi:10.19818/j.cnki.1671-1637.2020.06.022.

Jiang, L., Xie, Y., & Ren, T. (2020). A deep neural networks approach for pixel-level runway pavement crack segmentation using drone-captured images. arXiv preprint, arXiv:2001.03257. doi:10.48550/arXiv.2001.03257.

Li, B., Fu, M., & Li, Q. (2021). Runway Crack Detection Based on YOLOV5. 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 1252–1255. doi:10.1109/iccasit53235.2021.9633666.

Liu, J., Liu, F., Zheng, C., Zhou, D., & Wang, L. (2022). Optimizing asphalt mix design through predicting the rut depth of asphalt pavement using machine learning. Construction and Building Materials, 356. doi:10.1016/j.conbuildmat.2022.129211.

Zhang, C., Nateghinia, E., Miranda-Moreno, L. F., & Sun, L. (2022). Pavement distress detection using convolutional neural network (CNN): A case study in Montreal, Canada. International Journal of Transportation Science and Technology, 11(2), 298–309. doi:10.1016/j.ijtst.2021.04.008.

Amhaz, R., Chambon, S., Idier, J., & Baltazart, V. (2016). Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2718–2729. doi:10.1109/TITS.2015.2477675.

Ravi, R., Bullock, D., & Habib, A. (2020). Highway and airport runway pavement inspection using mobile LIDAR. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B1), 349–354. doi:10.5194/isprs-archives-XLIII-B1-2020-349-2020.

Cereceda, D., Medel-Vera, C., Ortiz, M., & Tramon, J. (2022). Roughness and condition prediction models for airfield pavements using digital image processing. Automation in Construction, 139, 139. doi:10.1016/j.autcon.2022.104325.

Kumar, P., & Sharma, M. (2022). Functional Condition Evaluation of Airfield Pavements Using Automated Road Survey System—A Case Study of a Small Sized Airport. Road and Airfield Pavement Technology. Lecture Notes in Civil Engineering, 193, Springer, Cham, Switzerland. doi:10.1007/978-3-030-87379-0_13.

Pietersen, R., Beauregard, M., & Einstein, H. (2022). Automated method for airfield pavement condition index evaluations. Automation in Construction, 141, 104408. doi:10.1016/j.autcon.2022.104408.

Suh, Y. C., Park, D. Y., & Jeong, K. Y. (2002). Development of deterioration prediction models for airfield rigid pavements. Transportation Research Record, 1788(1788), 132–137. doi:10.3141/1788-17.

Yuan, J., & Mooney, M. A. (2003). Development of Adaptive Performance Models for Oklahoma Airfield Pavement Management System. Transportation Research Record, 1853(1853), 44–54. doi:10.3141/1853-06.

Tarefder, R. A., & Rahman, M. M. (2016). Development of system dynamic approaches to airport pavements maintenance. Journal of Transportation Engineering, 142(8), 04016027. doi:10.1061/(ASCE)TE.1943-5436.0000856.

Camarena Campos, K. A., & Flores Gonzales, L. (2018). Proposal of Numerical Model for Airport Pavement Management Purposes. Proceedings of the 16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and Inclusion.†doi:10.18687/laccei2018.1.1.417.

Saleh, N. F., Keshavarzi, B., Yousefi Rad, F., Mocelin, D., Elwardany, M., Castorena, C., Underwood, B. S., & Kim, Y. R. (2020). Effects of aging on asphalt mixture and pavement performance. Construction and Building Materials, 258, 258. doi:10.1016/j.conbuildmat.2020.120309.

Kwak, P. J., Kim, D. H., Kim, S. J., & Jeong, J. H. (2021). Development of a non-linear PCI model for homogeneous zones of concrete airport pavements. Proceedings of the Institution of Civil Engineers: Transport, 174(5), 305–319. doi:10.1680/jtran.18.00018.

Di Mascio, P., Ragnoli, A., Portas, S., & Santoni, M. (2021). Monitor activity for the implementation of a pavement—management system at cagliari airport. Sustainability (Switzerland), 13(17), 9837. doi:10.3390/su13179837.

Ashtiani, A. Z. (2021). Application of Machine Learning Techniques to Pavement Performance Modeling. DTFACT-15-D-00007, Airport Engineering Division, Federal Aviation Administration, U.S. Department of Transportation, Washington, United States.

Ali, A. A., Esekbi, M. I., & Sreh, M. M. (2022). Predicting Pavement Condition Index Using Machine Learning Algorithms and Conventional Techniques. Journal of Pure & Applied Sciences, 21(4), 304-309. doi:10.51984/jopas.v21i4.2267.

Wibowo, A., Subagio, B. S., Rahman, H., & Frazila, and R. B. (2024). Evaluation of the Airport Pavement Condition Index in the Aircraft Lateral Wander Area. International Journal of GEOMATE, 27(122), 87–95. doi:10.21660/2024.122.g13151.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Aris Wibowo, Ade Sjafruddin, Bambang Sugeng Subagio, Russ Bona Frazila

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message