Fire Resistance of Crushed Brick-Based Alkali-Activated Mortars

Dalibor Kramarić, Ivanka N. Grubeša, Neno Torić, Rosana Ribić, Nevenka Mijatović, Milica V. Vasić

Abstract


This study investigates the fire resistance of alkali-activated mortar incorporating crushed brick as both a precursor and aggregate. The optimal alkaline activator was identified as a combination of KOH and Na₂SiO₃, with a curing period of 3 days at 70 °C. Two mortar series were produced, each exhibiting different workability: on series comprised cement mortar, while the other included three alkali-activated mortars, with variations in the molarity of the KOH solution. The mortar samples were subsequently heated to 600°C, and their mechanical properties and mass were measured to determine residual values/losses. The best-performing alkali-activated and cement mortars underwent visual assessments of cross-sections to evaluate the impact of mortar consistency on fire resistance. Additionally, changes in mineralogy and microstructure were followed by instrumental techniques to clarify the results before and after heating. While cement mortars had superior mechanical properties at room temperature, alkali-activated mortars retained a higher percentage of their mechanical properties post-heating, demonstrating better fire resistance. Mortars with plastic consistency showed better fire resistance than those with fluid consistency. These findings suggest that brick-based alkali-activated mortars could be developed into fire protection boards for structural members.

 

Doi: 10.28991/CEJ-2025-011-04-05

Full Text: PDF


Keywords


Alkali-Activated Mortar; Fire Resistance; Mechanical Properties; Mass; FT-IR; FE-SEM-EDS Analysis.

References


Malik, M., Bhattacharyya, S. K., & Barai, S. V. (2021). Thermal and mechanical properties of concrete and its constituents at elevated temperatures: A review. Construction and Building Materials, 270, 121398. doi:10.1016/j.conbuildmat.2020.121398.

Netinger, I., Rukavina, M. J., & Mladenovič, A. (2013). Improvement of post-fire properties of concrete with steel slag aggregate. Procedia Engineering, 62, 745–753. doi:10.1016/j.proeng.2013.08.121.

Gökçe, H. S. (2024). Durability of slag-based alkali-activated materials: A critical review. Journal of the Australian Ceramic Society, 60(3), 885–903. doi:10.1007/s41779-024-01011-z.

Ghazy, M. F., Metwally Abd Allah, A. B. D., Taman, M., & Mehriz, A. (2023). Performance of geopolymer mortars prepared by different alkaline solutions under elevated temperature. Journal of Materials and Engineering Structures, 10(3), 423-447.

Sandeep, G. S., Pandit, P., Prashanth, S., & Jagadisha, H. M. (2024). Influence of Gypsum on the Residual Properties of Fly Ash-Slag-Based Alkali-Activated Concrete. Civil Engineering Journal (Iran), 10(3), 915–927. doi:10.28991/CEJ-2024-010-03-017.

Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. doi:10.1016/j.cemconres.2017.02.009.

Kravchenko, E., Lazorenko, G., Jiang, X., & Leng, Z. (2024). Alkali-activated materials made of construction and demolition waste as precursors: A review. Sustainable Materials and Technologies, 39, 829. doi:10.1016/j.susmat.2024.e00829.

Jamalimoghadam, M., Vakili, A. H., Keskin, I., Totonchi, A., & Bahmyari, H. (2024). Solidification and utilization of municipal solid waste incineration ashes: Advancements in alkali-activated materials and stabilization techniques, a review. Journal of Environmental Management, 367, 122014. doi:10.1016/j.jenvman.2024.122014.

Leng, Z., Caon, Y., Zhu, X., Christou, G., Li, S., Mohd, N. A., & El Atar, S. (2024). From Debris to Innovation: Unveiling a New Frontier for Alkali-Activated Materials. Journal of Cleaner Production, 143218, 143218. doi:10.1016/j.jclepro.2024.143218.

Shaikh, F. U. A., Kahlon, N. S., & Dogar, A. U. R. (2023). Effect of Elevated Temperature on the Behavior of Amorphous Metallic Fibre-Reinforced Cement and Geopolymer Composites. Fibers, 11(4), 31. doi:10.3390/fib11040031.

Sedira, N., Castro-Gomes, J., & Magrinho, M. (2018). Red clay brick and tungsten mining waste-based alkali-activated binder: Microstructural and mechanical properties. Construction and Building Materials, 190, 1034–1048. doi:10.1016/j.conbuildmat.2018.09.153.

da Costa Gonçalves, L. F., Balestra, C. E. T., & Ramirez Gil, M. A. (2023). Evaluation of mechanical, physical and chemical properties of ecological modular soil-alkali activated bricks without Portland cement. Environmental Development, 48, 100932. doi:10.1016/j.envdev.2023.100932.

Li, Z., Xu, G., & Shi, X. (2021). Reactivity of coal fly ash used in cementitious binder systems: A state-of-the-art overview. Fuel, 301, 121031. doi:10.1016/j.fuel.2021.121031.

Seyedian Choubi, S., & Meral Akgul, C. (2022). High temperature exposure of alkali-activated coal fly ashes. Journal of Building Engineering, 59, 105081. doi:10.1016/j.jobe.2022.105081.

Tran, N. P., Nguyen, T. N., Black, J. R., & Ngo, T. D. (2024). High-temperature stability of ambient-cured one-part alkali-activated materials incorporating graphene nanoplatelets for thermal energy storage. Developments in the Built Environment, 18, 100447. doi:10.1016/j.dibe.2024.100447.

Statkauskas, M., Vaičiukynienė, D., Grinys, A., & Paul Borg, R. (2023). Mechanical properties and microstructure of ternary alkali activated system: Red brick waste, metakaolin and phosphogypsum. Construction and Building Materials, 387, 131648. doi:10.1016/j.conbuildmat.2023.131648.

Pan, Z., Sanjayan, J. G., & Collins, F. (2014). Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cement and Concrete Research, 56, 182–189. doi:10.1016/j.cemconres.2013.11.014.

Abdulmatin, A., Sa, N., Dueramae, S., Haruehansapong, S., Tangchirapat, W., & Jaturapitakkul, C. (2024). Strength and Acid Resistance of Mortar with Different Binders from Palm Oil Fuel Ash, Slag, and Calcium Carbide Residue. Civil Engineering Journal (Iran), 10(7), 2195–2215. doi:10.28991/CEJ-2024-010-07-08.

Pan, Z., Tao, Z., Cao, Y. F., Wuhrer, R., & Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cement and Concrete Composites, 86, 9–18. doi:10.1016/j.cemconcomp.2017.09.011.

Jiang, X., Xiao, R., Zhang, M., Hu, W., Bai, Y., & Huang, B. (2020). A laboratory investigation of steel to fly ash-based geopolymer paste bonding behavior after exposure to elevated temperatures. Construction and Building Materials, 254, 119267. doi:10.1016/j.conbuildmat.2020.119267.

Abd Razak, S. N., Shafiq, N., Guillaumat, L., Farhan, S. A., & Lohana, V. K. (2022). Fire-Exposed Fly-Ash-Based Geopolymer Concrete: Effects of Burning Temperature on Mechanical and Microstructural Properties. Materials, 15(5), 1884. doi:10.3390/ma15051884.

Duan, P., Yan, C., Zhou, W., & Luo, W. (2015). Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes. Arabian Journal for Science and Engineering, 40(8), 2261–2269. doi:10.1007/s13369-015-1748-0.

Song, Q., Guo, M. Z., & Ling, T. C. (2022). A review of elevated-temperature properties of alternative binders: Supplementary cementitious materials and alkali-activated materials. Construction and Building Materials, 341, 127894. doi:10.1016/j.conbuildmat.2022.127894.

Gado, R. A., Hebda, M., Lach, M., & Mikula, J. (2020). Alkali activation of waste clay bricks: Influence of the silica modulus, SiO2/Na2O, H2O/Na2O molar ratio, and liquid/solid ratio. Materials, 13(2), 383. doi:10.3390/ma13020383.

Cardoza, A., & Colorado, H. A. (2023). Alkali-activated cement manufactured by the alkaline activation of demolition and construction waste using brick and concrete wastes. Open Ceramics, 16, 100438. doi:10.1016/j.oceram.2023.100438.

García-Díaz, A., Delgado-Plana, P., Bueno-Rodríguez, S., & Eliche-Quesada, D. (2024). Investigation of waste clay brick (chamotte) addition and activator modulus in the properties of alkaline activation cements based on construction and demolition waste. Journal of Building Engineering, 84, 108568. doi:10.1016/j.jobe.2024.108568.

Robayo, R. A., Mulford, A., Munera, J., & Mejía de Gutiérrez, R. (2016). Alternative cements based on alkali-activated red clay brick waste. Construction and Building Materials, 128, 163–169. doi:10.1016/j.conbuildmat.2016.10.023.

Robayo-Salazar, R. A., Mejía-Arcila, J. M., & Mejía de Gutiérrez, R. (2017). Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. Journal of Cleaner Production, 166, 242–252. doi:10.1016/j.jclepro.2017.07.243.

Zhang, Z., Wong, Y. C., & Arulrajah, A. (2021). Feasibility of producing non-fired compressed masonry units from brick clay mill residues by alkali activation. Journal of Cleaner Production, 306, 126916. doi:10.1016/j.jclepro.2021.126916.

Ulugöl, H., Kul, A., Yıldırım, G., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280, 124358. doi:10.1016/j.jclepro.2020.124358.

Yıldırım, G., Kul, A., Özçelikci, E., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Development of alkali-activated binders from recycled mixed masonry-originated waste. Journal of Building Engineering, 33, 101690. doi:10.1016/j.jobe.2020.101690.

Vasić, M. V., Terzić, A., Radovanović, Ž., Radojević, Z., & Warr, L. N. (2022). Alkali-activated geopolymerization of a low illitic raw clay and waste brick mixture. An alternative to traditional ceramics. Applied Clay Science, 218, 106410. doi:10.1016/j.clay.2022.106410.

Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98–106. doi:10.1016/j.conbuildmat.2013.01.031.

Tuyan, M., Andiç-Çakir, Ö., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135, 242–252. doi:10.1016/j.compositesb.2017.10.013.

Hosan, A., Haque, S., & Shaikh, F. (2016). Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: A comparative study. Journal of Building Engineering, 8, 123–130. doi:10.1016/j.jobe.2016.10.005.

Fernández-Jiménez, A., Palomo, A., & Criado, M. (2006). Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Materiales de Construcción, 56(281), 51–65. doi:10.3989/mc.2006.v56.i281.92.

Gil, A., Banerji, S., & Kodur, V. (2023). Factors influencing pore pressure measurements in concrete during heating and its influence on fire-induced spalling. Cement and Concrete Composites, 142, 105228. doi:10.1016/j.cemconcomp.2023.105228.

Lahoti, M., Wijaya, S. F., Tan, K. H., & Yang, E. H. (2020). Tailoring sodium-based fly ash geopolymers with variegated thermal performance. Cement and Concrete Composites, 107, 103507. doi:10.1016/j.cemconcomp.2019.103507.

Fernandes, F. M., Lourenço, P. B., & Castro, F. (2010). Ancient Clay Bricks: Manufacture and Properties. Materials, Technologies and Practice in Historic Heritage Structures, 1(3), 29–48. doi:10.1007/978-90-481-2684-2_3.

EN 196-2:2013. (2013). Methods of testing cement - Part 2: Chemical analysis of cement. European Committee for Standardization, Brussels, Belgium.

ISO 13320:2020. (2020). Particle size analysis - Laser diffraction methods. International Organization for Standardization (ISO), Geneva, Switzerland.

EN 1015-3:1999. (1999). Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar. European Committee for Standardization, Brussels, Belgium.

RILEM TC 129-MHT. (2004). Test methods for mechanical properties of concrete at high temperatures: Modulus of elasticity for service and accident conditions. Materials and Structures, 37(266), 139–144.

EN 1015-11:2019 (2019). Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. European Committee for Standardization, Brussels, Belgium.

Kumar Mishra, A., Mishra, A., & Anshumali. (2021). Geochemical characterization of bricks used in historical monuments of 14-18th century CE of Haryana region of the Indian subcontinent: Reference to raw materials and production technique. Construction and Building Materials, 269, 121802. doi:10.1016/j.conbuildmat.2020.121802.

Hlavay, J., Jonas, K., Elek, S., & Inczedy, J. (1978). Characterization of the Particle Size and the Crystallinity of Certain Minerals by Ir Spectrophotometry and Other Instrumental Methods - 2. Investigations on Quartz and Feldspar. Clays and Clay Minerals, 26(2), 139–143. doi:10.1346/CCMN.1978.0260209.

Agrawal, P., & Misra, S. N. (2014). Irreversible Dilatometry as a Tool for Body Composition and Firing Schedule Design in Traditional Ceramics. Transactions of the Indian Ceramic Society, 73(1), 14–21. doi:10.1080/0371750X.2013.870049.

Prud’homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., & Rossignol, S. (2011). In situ inorganic foams prepared from various clays at low temperature. Applied Clay Science, 51(1–2), 15–22. doi:10.1016/j.clay.2010.10.016.

Vasić, M. V., Jantunen, H., Mijatović, N., Nelo, M., & Muñoz Velasco, P. (2023). Influence of coal ashes on fired clay brick quality: Random forest regression and artificial neural networks modeling. Journal of Cleaner Production, 407, 137153. doi:10.1016/j.jclepro.2023.137153.

Peyne, J., Gautron, J., Doudeau, J., Joussein, E., & Rossignol, S. (2017). Influence of calcium addition on calcined brick clay based geopolymers: A thermal and FTIR spectroscopy study. Construction and Building Materials, 152, 794–803. doi:10.1016/j.conbuildmat.2017.07.047.

Santos, V. H. J. M. dos, Pontin, D., Ponzi, G. G. D., Stepanha, A. S. de G. e., Martel, R. B., Schütz, M. K., Einloft, S. M. O., & Dalla Vecchia, F. (2021). Application of Fourier Transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement. Construction and Building Materials, 313, 125413. doi:10.1016/j.conbuildmat.2021.125413.

Yusuf, M. O. (2023). Bond Characterization in Cementitious Material Binders Using Fourier-Transform Infrared Spectroscopy. Applied Sciences (Switzerland), 13(5), 3353. doi:10.3390/app13053353.

Li, X., Gu, X., Xia, X., Madenci, E., Chen, X., & Zhang, Q. (2022). Effect of water-cement ratio and size on tensile damage in hardened cement paste: Insight from peridynamic simulations. Construction and Building Materials, 356, 129256. doi:10.1016/j.conbuildmat.2022.129256.

Messaoudene, I., Ezziane, M., Lahouassa, A., Kaaloul, S., & Molez, L. (2021). Physico-mechanical and micostructural effects of water/cement ratio on the mortars upon heating. Journal of Materials and Engineering Structures, 8(2), 279-286.

Palizi, S., & Toufigh, V. (2023). Fire-induced damage assessment of cementless alkali-activated slag-based concrete. Construction and Building Materials, 393, 132002. doi:10.1016/j.conbuildmat.2023.132002.

Alshuqari, E. A., & Çevik, A. (2024). Bond-Slippage Characteristics between Carbon Fiber Reinforced Polymer Sheet and Heat-Damaged Geopolymer Concrete. Civil Engineering Journal (Iran), 10(7), 2105–2122. doi:10.28991/CEJ-2024-010-07-03.

Hassaan, M. Y., & Abdel-Hakeem, N. (1989). Study of anhydrous and hydrated Portland cement containing alkali ions by infrared spectroscopy. Journal of Materials Science Letters, 8(5), 578–580. doi:10.1007/BF00720305.

Vetter, M., Gonzalez-Rodriguez, J., Nauha, E., & Kerr, T. (2019). The use of Raman spectroscopy to monitor phase changes in concrete following high temperature exposure. Construction and Building Materials, 204, 450–457. doi:10.1016/j.conbuildmat.2019.01.165.

Ismail Ahmed Ali, S., & Lublóy, E. (2022). Effect of elevated temperature on the magnetite and quartz concrete at different W/C ratios as nuclear shielding concretes. Nuclear Materials and Energy, 33, 101234. doi:10.1016/j.nme.2022.101234.

Wang, G., Zhang, J., Wang, Y., Tan, Y., Li, Z., Zhang, B., & Liu, Z. (2023). Study on the Bath Smelting Reduction Reaction and Mechanism of Iron Ore: A Review. Metals, 13(4), 672. doi:10.3390/met13040672.

Karunadasa, K. S. P., Manoratne, C. H., Pitawala, H. M. T. G. A., & Rajapakse, R. M. G. (2019). Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 134, 21–28. doi:10.1016/j.jpcs.2019.05.023.

Hojati, M., Rajabipour, F., & Radlińska, A. (2019). Drying shrinkage of alkali-activated cements: effect of humidity and curing temperature. Materials and Structures/Materiaux et Constructions, 52(6), 118. doi:10.1617/s11527-019-1430-1.

Frayyeh, Q. J., & Kamil, M. H. (2021). The effect of adding fibers on dry shrinkage of geopolymer concrete. Civil Engineering Journal (Iran), 7(12), 2099–2108. doi:10.28991/cej-2021-03091780.

Hager, I., Sitarz, M., & Mróz, K. (2021). Fly-ash based geopolymer mortar for high-temperature application – Effect of slag addition. Journal of Cleaner Production, 316, 128168. doi:10.1016/j.jclepro.2021.128168.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Dalibor Kramarić

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message