Fire Resistance of Crushed Brick-Based Alkali-Activated Mortars
Abstract
Doi: 10.28991/CEJ-2025-011-04-05
Full Text: PDF
Keywords
References
Malik, M., Bhattacharyya, S. K., & Barai, S. V. (2021). Thermal and mechanical properties of concrete and its constituents at elevated temperatures: A review. Construction and Building Materials, 270, 121398. doi:10.1016/j.conbuildmat.2020.121398.
Netinger, I., Rukavina, M. J., & Mladenovič, A. (2013). Improvement of post-fire properties of concrete with steel slag aggregate. Procedia Engineering, 62, 745–753. doi:10.1016/j.proeng.2013.08.121.
Gökçe, H. S. (2024). Durability of slag-based alkali-activated materials: A critical review. Journal of the Australian Ceramic Society, 60(3), 885–903. doi:10.1007/s41779-024-01011-z.
Ghazy, M. F., Metwally Abd Allah, A. B. D., Taman, M., & Mehriz, A. (2023). Performance of geopolymer mortars prepared by different alkaline solutions under elevated temperature. Journal of Materials and Engineering Structures, 10(3), 423-447.
Sandeep, G. S., Pandit, P., Prashanth, S., & Jagadisha, H. M. (2024). Influence of Gypsum on the Residual Properties of Fly Ash-Slag-Based Alkali-Activated Concrete. Civil Engineering Journal (Iran), 10(3), 915–927. doi:10.28991/CEJ-2024-010-03-017.
Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. doi:10.1016/j.cemconres.2017.02.009.
Kravchenko, E., Lazorenko, G., Jiang, X., & Leng, Z. (2024). Alkali-activated materials made of construction and demolition waste as precursors: A review. Sustainable Materials and Technologies, 39, 829. doi:10.1016/j.susmat.2024.e00829.
Jamalimoghadam, M., Vakili, A. H., Keskin, I., Totonchi, A., & Bahmyari, H. (2024). Solidification and utilization of municipal solid waste incineration ashes: Advancements in alkali-activated materials and stabilization techniques, a review. Journal of Environmental Management, 367, 122014. doi:10.1016/j.jenvman.2024.122014.
Leng, Z., Caon, Y., Zhu, X., Christou, G., Li, S., Mohd, N. A., & El Atar, S. (2024). From Debris to Innovation: Unveiling a New Frontier for Alkali-Activated Materials. Journal of Cleaner Production, 143218, 143218. doi:10.1016/j.jclepro.2024.143218.
Shaikh, F. U. A., Kahlon, N. S., & Dogar, A. U. R. (2023). Effect of Elevated Temperature on the Behavior of Amorphous Metallic Fibre-Reinforced Cement and Geopolymer Composites. Fibers, 11(4), 31. doi:10.3390/fib11040031.
Sedira, N., Castro-Gomes, J., & Magrinho, M. (2018). Red clay brick and tungsten mining waste-based alkali-activated binder: Microstructural and mechanical properties. Construction and Building Materials, 190, 1034–1048. doi:10.1016/j.conbuildmat.2018.09.153.
da Costa Gonçalves, L. F., Balestra, C. E. T., & Ramirez Gil, M. A. (2023). Evaluation of mechanical, physical and chemical properties of ecological modular soil-alkali activated bricks without Portland cement. Environmental Development, 48, 100932. doi:10.1016/j.envdev.2023.100932.
Li, Z., Xu, G., & Shi, X. (2021). Reactivity of coal fly ash used in cementitious binder systems: A state-of-the-art overview. Fuel, 301, 121031. doi:10.1016/j.fuel.2021.121031.
Seyedian Choubi, S., & Meral Akgul, C. (2022). High temperature exposure of alkali-activated coal fly ashes. Journal of Building Engineering, 59, 105081. doi:10.1016/j.jobe.2022.105081.
Tran, N. P., Nguyen, T. N., Black, J. R., & Ngo, T. D. (2024). High-temperature stability of ambient-cured one-part alkali-activated materials incorporating graphene nanoplatelets for thermal energy storage. Developments in the Built Environment, 18, 100447. doi:10.1016/j.dibe.2024.100447.
Statkauskas, M., Vaičiukynienė, D., Grinys, A., & Paul Borg, R. (2023). Mechanical properties and microstructure of ternary alkali activated system: Red brick waste, metakaolin and phosphogypsum. Construction and Building Materials, 387, 131648. doi:10.1016/j.conbuildmat.2023.131648.
Pan, Z., Sanjayan, J. G., & Collins, F. (2014). Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cement and Concrete Research, 56, 182–189. doi:10.1016/j.cemconres.2013.11.014.
Abdulmatin, A., Sa, N., Dueramae, S., Haruehansapong, S., Tangchirapat, W., & Jaturapitakkul, C. (2024). Strength and Acid Resistance of Mortar with Different Binders from Palm Oil Fuel Ash, Slag, and Calcium Carbide Residue. Civil Engineering Journal (Iran), 10(7), 2195–2215. doi:10.28991/CEJ-2024-010-07-08.
Pan, Z., Tao, Z., Cao, Y. F., Wuhrer, R., & Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cement and Concrete Composites, 86, 9–18. doi:10.1016/j.cemconcomp.2017.09.011.
Jiang, X., Xiao, R., Zhang, M., Hu, W., Bai, Y., & Huang, B. (2020). A laboratory investigation of steel to fly ash-based geopolymer paste bonding behavior after exposure to elevated temperatures. Construction and Building Materials, 254, 119267. doi:10.1016/j.conbuildmat.2020.119267.
Abd Razak, S. N., Shafiq, N., Guillaumat, L., Farhan, S. A., & Lohana, V. K. (2022). Fire-Exposed Fly-Ash-Based Geopolymer Concrete: Effects of Burning Temperature on Mechanical and Microstructural Properties. Materials, 15(5), 1884. doi:10.3390/ma15051884.
Duan, P., Yan, C., Zhou, W., & Luo, W. (2015). Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes. Arabian Journal for Science and Engineering, 40(8), 2261–2269. doi:10.1007/s13369-015-1748-0.
Song, Q., Guo, M. Z., & Ling, T. C. (2022). A review of elevated-temperature properties of alternative binders: Supplementary cementitious materials and alkali-activated materials. Construction and Building Materials, 341, 127894. doi:10.1016/j.conbuildmat.2022.127894.
Gado, R. A., Hebda, M., Lach, M., & Mikula, J. (2020). Alkali activation of waste clay bricks: Influence of the silica modulus, SiO2/Na2O, H2O/Na2O molar ratio, and liquid/solid ratio. Materials, 13(2), 383. doi:10.3390/ma13020383.
Cardoza, A., & Colorado, H. A. (2023). Alkali-activated cement manufactured by the alkaline activation of demolition and construction waste using brick and concrete wastes. Open Ceramics, 16, 100438. doi:10.1016/j.oceram.2023.100438.
García-Díaz, A., Delgado-Plana, P., Bueno-Rodríguez, S., & Eliche-Quesada, D. (2024). Investigation of waste clay brick (chamotte) addition and activator modulus in the properties of alkaline activation cements based on construction and demolition waste. Journal of Building Engineering, 84, 108568. doi:10.1016/j.jobe.2024.108568.
Robayo, R. A., Mulford, A., Munera, J., & Mejía de Gutiérrez, R. (2016). Alternative cements based on alkali-activated red clay brick waste. Construction and Building Materials, 128, 163–169. doi:10.1016/j.conbuildmat.2016.10.023.
Robayo-Salazar, R. A., Mejía-Arcila, J. M., & Mejía de Gutiérrez, R. (2017). Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. Journal of Cleaner Production, 166, 242–252. doi:10.1016/j.jclepro.2017.07.243.
Zhang, Z., Wong, Y. C., & Arulrajah, A. (2021). Feasibility of producing non-fired compressed masonry units from brick clay mill residues by alkali activation. Journal of Cleaner Production, 306, 126916. doi:10.1016/j.jclepro.2021.126916.
Ulugöl, H., Kul, A., Yıldırım, G., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280, 124358. doi:10.1016/j.jclepro.2020.124358.
Yıldırım, G., Kul, A., Özçelikci, E., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Development of alkali-activated binders from recycled mixed masonry-originated waste. Journal of Building Engineering, 33, 101690. doi:10.1016/j.jobe.2020.101690.
Vasić, M. V., Terzić, A., Radovanović, Ž., Radojević, Z., & Warr, L. N. (2022). Alkali-activated geopolymerization of a low illitic raw clay and waste brick mixture. An alternative to traditional ceramics. Applied Clay Science, 218, 106410. doi:10.1016/j.clay.2022.106410.
Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98–106. doi:10.1016/j.conbuildmat.2013.01.031.
Tuyan, M., Andiç-Çakir, Ö., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135, 242–252. doi:10.1016/j.compositesb.2017.10.013.
Hosan, A., Haque, S., & Shaikh, F. (2016). Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: A comparative study. Journal of Building Engineering, 8, 123–130. doi:10.1016/j.jobe.2016.10.005.
Fernández-Jiménez, A., Palomo, A., & Criado, M. (2006). Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Materiales de Construcción, 56(281), 51–65. doi:10.3989/mc.2006.v56.i281.92.
Gil, A., Banerji, S., & Kodur, V. (2023). Factors influencing pore pressure measurements in concrete during heating and its influence on fire-induced spalling. Cement and Concrete Composites, 142, 105228. doi:10.1016/j.cemconcomp.2023.105228.
Lahoti, M., Wijaya, S. F., Tan, K. H., & Yang, E. H. (2020). Tailoring sodium-based fly ash geopolymers with variegated thermal performance. Cement and Concrete Composites, 107, 103507. doi:10.1016/j.cemconcomp.2019.103507.
Fernandes, F. M., Lourenço, P. B., & Castro, F. (2010). Ancient Clay Bricks: Manufacture and Properties. Materials, Technologies and Practice in Historic Heritage Structures, 1(3), 29–48. doi:10.1007/978-90-481-2684-2_3.
EN 196-2:2013. (2013). Methods of testing cement - Part 2: Chemical analysis of cement. European Committee for Standardization, Brussels, Belgium.
ISO 13320:2020. (2020). Particle size analysis - Laser diffraction methods. International Organization for Standardization (ISO), Geneva, Switzerland.
EN 1015-3:1999. (1999). Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar. European Committee for Standardization, Brussels, Belgium.
RILEM TC 129-MHT. (2004). Test methods for mechanical properties of concrete at high temperatures: Modulus of elasticity for service and accident conditions. Materials and Structures, 37(266), 139–144.
EN 1015-11:2019 (2019). Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. European Committee for Standardization, Brussels, Belgium.
Kumar Mishra, A., Mishra, A., & Anshumali. (2021). Geochemical characterization of bricks used in historical monuments of 14-18th century CE of Haryana region of the Indian subcontinent: Reference to raw materials and production technique. Construction and Building Materials, 269, 121802. doi:10.1016/j.conbuildmat.2020.121802.
Hlavay, J., Jonas, K., Elek, S., & Inczedy, J. (1978). Characterization of the Particle Size and the Crystallinity of Certain Minerals by Ir Spectrophotometry and Other Instrumental Methods - 2. Investigations on Quartz and Feldspar. Clays and Clay Minerals, 26(2), 139–143. doi:10.1346/CCMN.1978.0260209.
Agrawal, P., & Misra, S. N. (2014). Irreversible Dilatometry as a Tool for Body Composition and Firing Schedule Design in Traditional Ceramics. Transactions of the Indian Ceramic Society, 73(1), 14–21. doi:10.1080/0371750X.2013.870049.
Prud’homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., & Rossignol, S. (2011). In situ inorganic foams prepared from various clays at low temperature. Applied Clay Science, 51(1–2), 15–22. doi:10.1016/j.clay.2010.10.016.
Vasić, M. V., Jantunen, H., Mijatović, N., Nelo, M., & Muñoz Velasco, P. (2023). Influence of coal ashes on fired clay brick quality: Random forest regression and artificial neural networks modeling. Journal of Cleaner Production, 407, 137153. doi:10.1016/j.jclepro.2023.137153.
Peyne, J., Gautron, J., Doudeau, J., Joussein, E., & Rossignol, S. (2017). Influence of calcium addition on calcined brick clay based geopolymers: A thermal and FTIR spectroscopy study. Construction and Building Materials, 152, 794–803. doi:10.1016/j.conbuildmat.2017.07.047.
Santos, V. H. J. M. dos, Pontin, D., Ponzi, G. G. D., Stepanha, A. S. de G. e., Martel, R. B., Schütz, M. K., Einloft, S. M. O., & Dalla Vecchia, F. (2021). Application of Fourier Transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement. Construction and Building Materials, 313, 125413. doi:10.1016/j.conbuildmat.2021.125413.
Yusuf, M. O. (2023). Bond Characterization in Cementitious Material Binders Using Fourier-Transform Infrared Spectroscopy. Applied Sciences (Switzerland), 13(5), 3353. doi:10.3390/app13053353.
Li, X., Gu, X., Xia, X., Madenci, E., Chen, X., & Zhang, Q. (2022). Effect of water-cement ratio and size on tensile damage in hardened cement paste: Insight from peridynamic simulations. Construction and Building Materials, 356, 129256. doi:10.1016/j.conbuildmat.2022.129256.
Messaoudene, I., Ezziane, M., Lahouassa, A., Kaaloul, S., & Molez, L. (2021). Physico-mechanical and micostructural effects of water/cement ratio on the mortars upon heating. Journal of Materials and Engineering Structures, 8(2), 279-286.
Palizi, S., & Toufigh, V. (2023). Fire-induced damage assessment of cementless alkali-activated slag-based concrete. Construction and Building Materials, 393, 132002. doi:10.1016/j.conbuildmat.2023.132002.
Alshuqari, E. A., & Çevik, A. (2024). Bond-Slippage Characteristics between Carbon Fiber Reinforced Polymer Sheet and Heat-Damaged Geopolymer Concrete. Civil Engineering Journal (Iran), 10(7), 2105–2122. doi:10.28991/CEJ-2024-010-07-03.
Hassaan, M. Y., & Abdel-Hakeem, N. (1989). Study of anhydrous and hydrated Portland cement containing alkali ions by infrared spectroscopy. Journal of Materials Science Letters, 8(5), 578–580. doi:10.1007/BF00720305.
Vetter, M., Gonzalez-Rodriguez, J., Nauha, E., & Kerr, T. (2019). The use of Raman spectroscopy to monitor phase changes in concrete following high temperature exposure. Construction and Building Materials, 204, 450–457. doi:10.1016/j.conbuildmat.2019.01.165.
Ismail Ahmed Ali, S., & Lublóy, E. (2022). Effect of elevated temperature on the magnetite and quartz concrete at different W/C ratios as nuclear shielding concretes. Nuclear Materials and Energy, 33, 101234. doi:10.1016/j.nme.2022.101234.
Wang, G., Zhang, J., Wang, Y., Tan, Y., Li, Z., Zhang, B., & Liu, Z. (2023). Study on the Bath Smelting Reduction Reaction and Mechanism of Iron Ore: A Review. Metals, 13(4), 672. doi:10.3390/met13040672.
Karunadasa, K. S. P., Manoratne, C. H., Pitawala, H. M. T. G. A., & Rajapakse, R. M. G. (2019). Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 134, 21–28. doi:10.1016/j.jpcs.2019.05.023.
Hojati, M., Rajabipour, F., & Radlińska, A. (2019). Drying shrinkage of alkali-activated cements: effect of humidity and curing temperature. Materials and Structures/Materiaux et Constructions, 52(6), 118. doi:10.1617/s11527-019-1430-1.
Frayyeh, Q. J., & Kamil, M. H. (2021). The effect of adding fibers on dry shrinkage of geopolymer concrete. Civil Engineering Journal (Iran), 7(12), 2099–2108. doi:10.28991/cej-2021-03091780.
Hager, I., Sitarz, M., & Mróz, K. (2021). Fly-ash based geopolymer mortar for high-temperature application – Effect of slag addition. Journal of Cleaner Production, 316, 128168. doi:10.1016/j.jclepro.2021.128168.
DOI: 10.28991/CEJ-2025-011-04-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dalibor Kramarić

This work is licensed under a Creative Commons Attribution 4.0 International License.