Analysis of GNSS-IMU Lidar Integration for Indoor Positioning Using Unscented Kalman Filter
Downloads
Accurate navigation systems are important in various vehicle applications, both indoors and outdoors. Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) are sensors that are often used in vehicle navigation systems. GNSS has the advantage of providing accurate position and speed information, IMU is able to make measurements without being affected by environmental conditions, and LiDAR sensors can model the environment; however, the limited signal on GNSS in indoor environments results in decreased position accuracy. The development of GNSS-IMU integration has been widely carried out, one of which is by adding a LiDAR sensor. In this study, an improvement will be made to the integration algorithm on Vision RTK2, which produces GNSS-IMU coordinate data, and Backpack Lidar, which can display 3D visualization on the traversed path using the Unscented Kalman Filter (UKF) method to improve navigation accuracy, especially in indoor environments. The results of the study showed that the UKF simulation and free outage conditions showed high accuracy with RMSE of 0.00308 m and 0.00175 m for the Easting and Northing positions and MAE of 0.00088 m and 0.00024 m. However, in outage conditions, the RMSE values were 4.0881 m and 8.6317 m, and MAE of 5.9871 m and 7.4182 m. The results of the 3D point cloud of the LiDAR model that had been georeferenced using the UKF fusion results and the KKH calculation results were validated using a rolling meter. Validation of point cloud processing from the 3D LiDAR model using a rolling meter and georeferencing with KKH calculations showed a small RMSE value, which was 0.3420 m, and 0.0354 m for the distance dimension with a rolling meter. 0.6358 m for georeferenced RMSE using UKF fusion data, and 0.0779 for distance dimension using roll meters. The small RMSE results indicate a high level of agreement between point cloud data and measurements using a rolling meter used as reference data. This study shows that the integration of GNSS-IMU sensors with LiDAR using the UKF method can improve the accuracy and reliability of indoor navigation systems.
Downloads
[1] Syazwani, C. J. N., Wahab, N. H. A., Sunar, N., Ariffin, S. H. S., Wong, K. Y., & Aun, Y. (2022). Indoor Positioning System: A Review. International Journal of Advanced Computer Science and Applications, 13(6), 477–490. doi:10.14569/IJACSA.2022.0130659.
[2] Cahyadi, M. N., & Rwabudandi, I. (2019). Integration of GNSS-IMU for increasing the observation accuracy in Condensed Areas (Infrastructure and Forest Canopies). E3S Web of Conferences, 94, 3015. doi:10.1051/e3sconf/20199403015.
[3] Cahyadi, M. N., Asfihani, T., Mardiyanto, R., & Erfianti, R. (2023). Performance of GPS and IMU sensor fusion using unscented Kalman filter for precise i-Boat navigation in infinite wide waters. Geodesy and Geodynamics, 14(3), 265–274. doi:10.1016/j.geog.2022.11.005.
[4] Cahyadi, M. N., Asfihani, T., Mardiyanto, R., & Erfianti, R. (2022). Loosely Coupled GNSS and IMU Integration for Accurate i-Boat Horizontal Navigation. International Journal of Geoinformatics, 18(3), 111–122. doi:10.52939/ijg.v18i3.2233.
[5] Meng, X., Wang, H., & Liu, B. (2017). A robust vehicle localization approach based on GNSS/IMU/DMI/LiDAR sensor fusion for autonomous vehicles. Sensors (Switzerland), 17(9), 2140. doi:10.3390/s17092140.
[6] Lin, J., Wang, R., Xiao, Z., Li, L., Yao, W., Han, W., & Zhao, B. (2017). Application of backpack Lidar to geological cross-section measurement. LIDAR Imaging Detection and Target Recognition 2017, 154. doi:10.1117/12.2295060.
[7] Aslinezhad, M., Malekijavan, A., & Abbasi, P. (2020). ANN-assisted robust GPS/INS information fusion to bridge GPS outage. Eurasip Journal on Wireless Communications and Networking, 2020(1), 129. doi:10.1186/s13638-020-01747-9.
[8] Cui, Y., Yang, B., Liu, P., & Kong, L. (2023). A Review of Indoor Automation Modeling Based on Light Detection and Ranging Point Clouds. Sensors and Materials, 35(1), 247. doi:10.18494/sam4211.
[9] Mousazadeh, H. (2013). A technical review on navigation systems of agricultural autonomous off-road vehicles. Journal of Terramechanics, 50(3), 211–232. doi:10.1016/j.jterra.2013.03.004.
[10] Strandberg, J., Hobiger, T., & Haas, R. (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solutions, 23(3), 61. doi:10.1007/s10291-019-0851-1.
[11] Kaczmarek, A., Rohm, W., Klingbeil, L., & Tchórzewski, J. (2022). Experimental 2D extended Kalman filter sensor fusion for low-cost GNSS/IMU/Odometers precise positioning system. Measurement, 193, 110963. doi:10.1016/j.measurement.2022.110963.
[12] Tondaś, D., Ilieva, M., van Leijen, F., van der Marel, H., & Rohm, W. (2023). Kalman filter-based integration of GNSS and InSAR observations for local nonlinear strong deformations. Journal of Geodesy, 97(12), 109. doi:10.1007/s00190-023-01789-z.
[13] Hu, G., Xu, L., Gao, B., Chang, L., & Zhong, Y. (2023). Robust Unscented Kalman Filter-Based Decentralized Multisensor Information Fusion for INS/GNSS/CNS Integration in Hypersonic Vehicle Navigation. IEEE Transactions on Instrumentation and Measurement, 72, 1–11. doi:10.1109/TIM.2023.3281565.
[14] Falco, G., Pini, M., & Marucco, G. (2017). Loose and tight GNSS/INS integrations: Comparison of performance assessed in real Urban scenarios. Sensors (Switzerland), 17(2), 255. doi:10.3390/s17020255.
[15] Ryu, J. H., Gankhuyag, G., & Chong, K. T. (2016). Navigation System Heading and Position Accuracy Improvement through GPS and INS Data Fusion. Journal of Sensors, 7942963. doi:10.1155/2016/7942963.
[16] Yang, C., Shi, W., & Chen, W. (2018). Correlational inference-based adaptive unscented Kalman filter with application in GNSS/IMU-integrated navigation. GPS Solutions, 22(4), 100. doi:10.1007/s10291-018-0766-2.
[17] Li, X., Zhang, X., Niu, X., Wang, J., Pel, L., Yu, F., Zhang, H., Yang, C., Gao, Z., Zhang, Q., Zhu, F., Wen, W., Li, T., Liao, J., & Li, X. (2023). Progress and Achievements of Multi - sensor Fusion Navigation in China during 2019-2023. Journal of Geodesy and Geoinformation Science, 6(3), 102–114. doi:10.11947/j.JGGS.2023.0310.
[18] Navisa, S. C., Cahyadi, M. N., & Asfihani, T. (2023). Analysis of GNSS and IMU Sensor Data Fusion Using the Unscented Kalman Filter Method on Medical Drones in Open Air. IOP Conference Series: Earth and Environmental Science, 1250(1), 12019. doi:10.1088/1755-1315/1250/1/012019.
[19] Alaba, S. Y. (2024). GPS-IMU sensor fusion for reliable autonomous vehicle position estimation. arXiv (Preprint), 1-6. doi:10.48550/arXiv.2405.08119.
[20] Wang, Y., Xie, C., Liu, Y., Zhu, J., & Qin, J. (2024). A Multi-Sensor Fusion Underwater Localization Method Based on Unscented Kalman Filter on Manifolds. Sensors, 24(19), 6299. doi:10.3390/s24196299.
[21] Sun, D., Wei, M., Lyu, Y., Wang, D., Li, S., Li, W., He, L., & Zhu, S. (2024). A Gaussian Unscented Kalman Filter algorithm for indoor positioning system using Ultra Wide Band measurement. IET Radar, Sonar & Navigation, 19(1), 12682. doi:10.1049/rsn2.12682.
[22] Impraimakis, M., & Smyth, A. W. (2022). An unscented Kalman filter method for real time input-parameter-state estimation. Mechanical Systems and Signal Processing, 162, 108026. doi:10.1016/j.ymssp.2021.108026.
[23] Zhuang, Y., Sun, X., Li, Y., Huai, J., Hua, L., Yang, X., Cao, X., Zhang, P., Cao, Y., Qi, L., Yang, J., El-Bendary, N., El-Sheimy, N., Thompson, J., & Chen, R. (2023). Multi-sensor integrated navigation/positioning systems using data fusion: From analytics-based to learning-based approaches. Information Fusion, 95, 62–90. doi:10.1016/j.inffus.2023.01.025.
[24] Chen, H., & Sun, R. (2022). A GNSS Quality Control Based GNSS/IMU Integrated Navigation Algorithm in Urban Environments. China Satellite Navigation Conference (CSNC 2022) Proceedings. Lecture Notes in Electrical Engineering. Springer, Singapore. doi:10.1007/978-981-19-2588-7_40.
[25] Jiang, C., Zhao, D., Zhang, Q., & Liu, W. (2023). A Multi-GNSS/IMU Data Fusion Algorithm Based on the Mixed Norms for Land Vehicle Applications. Remote Sensing, 15(9), 2439. doi:10.3390/rs15092439.
[26] Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., & Rus, D. (2020). LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5135–5142. doi:10.1109/iros45743.2020.9341176.
[27] Warku, H. T., Ko, N. Y., Yeom, H. G., & Choi, W. (2021). Three-Dimensional Mapping of Indoor and Outdoor Environment Using LIO-SAM. 2021 21st International Conference on Control, Automation and Systems (ICCAS), 1455–1458. doi:10.23919/iccas52745.2021.9649820.
[28] Triawan, L. A., Kurniawan, A., Raharjo, A. B., & Saptarini, D. (2024). Analysis of 3D Modeling Using LiDAR Velodyne for Tree Inventory Using the LIO-SAM Method. IOP Conference Series: Earth and Environmental Science, 1418(1), 12009. doi:10.1088/1755-1315/1418/1/012009.
[29] Cahyadi, M. N., Asfihani, T., Suhandri, H. F., & Erfianti, R. (2024). Unscented Kalman filter for a low-cost GNSS/IMU-based mobile mapping application under demanding conditions. Geodesy and Geodynamics, 15(2), 166–176. doi:10.1016/j.geog.2023.05.001.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.