Integrated FEM, CFD, and BIM Approaches for Optimizing Pre-Stressed Concrete Wind Turbine Tower Design
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-08
Full Text: PDF
Abdelrheem, A. E., El-Helloty, A., & Ehab, A. (2025). Integrated FEM, CFD, and BIM Approaches for Optimizing Pre-Stressed Concrete Wind Turbine Tower Design. Civil Engineering Journal, 11(2), 523–543. https://doi.org/10.28991/CEJ-2025-011-02-08
[1] Wiser, R., Bolinger, M., & Hoen, B. (2022). Land-Based Wind Market Report: 2022 Edition. Office of Energy Efficiency and Renewable Energy, U. S. Department of Energy, Washington, United States.
[2] Eissa, A., El-Helloty, A., & Ehab, A. (2024). Structural Analysis of New Octagonal Pre-Stressed Concrete for on Shore Wind Turbine Tower using Computational Fluid Dynamics (CFD). Zhongguo Kuangye Daxue Xuebao, 29(2), 139-151.
[3] Hasan, A.M.A.S. & Khalil, E.A.B.E. (2020). Analysis and Design of Optimum Pre-Stressed Concrete Wind Turbine Towers. Master Thesis, Arab Academy for Science, Technology & Maritime Transport, Smart Village Campus, Alexandria, Egypt.
[4] Lotfy, I. (2012). Prestressed concrete wind turbine supporting system. Master Thesis, University of Nebraska, Lincoln, United States.
[5] Eissa, A. E., & Hasan, M. A. (2020). Modal analysis of prestressed concrete structural system for wind turbine tower. International Journal of Sciences: Basic Applied Research, 49(2), 108-118.
[6] Lee, S. L., & Shin, S. J. (2022). Structural design optimization of a wind turbine blade using the genetic algorithm. Engineering optimization, 54(12), 2053-2070. doi:10.1080/0305215X.2021.1973450.
[7] Wu, E., Chen, H., Qu, W., Huo, C., Liang, Z., Huang, X., Li, Z., Li, H., He, B., Yang, T., & Shen, Z. (2020). Wind Load Evaluation of Wind Turbine Tower Design. Journal of Physics: Conference Series, 1622(1), 012071. doi:10.1088/1742-6596/1622/1/012071.
[8] Alzoubi, Y., Muciaccia, G., & Ferrara, L. (2025). Advances in Wind Turbine Tower Design and Optimization. Proceedings of the RILEM Spring Convention and Conference 2024. RSCC 2024. RILEM Book series, 56, Springer, Cham, Switzerland. doi:10.1007/978-3-031-70281-5_23.
[9] Nicholson, J. C., Arora, J. S., Goyal, D., & Tinjum, J. M. (2013). Multi-objective structural optimization of wind turbine tower and foundation systems using insight: A process automation and design exploration software. 10th World Congress on Structural and Multidisciplinary Optimization, 19-24 May, 2023, Orlando, United States.
[10] Li, Y., Paik, K. J., Xing, T., & Carrica, P. M. (2012). Dynamic overset CFD simulations of wind turbine aerodynamics. Renewable Energy, 37(1), 285-298. doi:10.1016/j.renene.2011.06.029.
[11] Guo, J., Liu, C., Cao, J., & Jiang, D. (2021). Damage identification of wind turbine blades with deep convolutional neural networks. Renewable Energy, 174, 122–133. doi:10.1016/j.renene.2021.04.040.
[12] Miyake, S., Teske, S., Rispler, J., & Feenstra, M. (2024). Solar and wind energy potential under land-resource constrained conditions in the Group of Twenty (G20). Renewable and Sustainable Energy Reviews, 202, 114622. doi:10.1016/j.rser.2024.114622.
[13] IEC 61400-12 (2017). Wind Turbines Part1:Design Requirements. International Electrotechnical Commission, Geneva, Switzerland.
[14] ASCE/SEI 7-16. (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414248.
[15] ACI 318-14. (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). American Concrete Institute (ACI), Michigan, United States.
[16] IEC 61400–1 (2005). Wind Turbines – Part 1: Design Requirements. International Electrotechnical Commission, Geneva, Switzerland.
[17] Li, Y., Zhang, Y., Timofte, R., Van Gool, L., Yu, L., Li, Y., ... & Wang, X. (2023). NTIRE 2023 challenge on efficient super-resolution: Methods and results. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 17-24 June, 2023, Vancouver, Canada.
[18] Cortés, J. A., Díez, L., Cañete, F. J., Sánchez-Martínez, J. J., & Entrambasaguas, J. T. (2011). Performance analysis of OFDM modulation on indoor broadband PLC channels. Eurasip Journal on Advances in Signal Processing, 2011. doi:10.1186/1687-6180-2011-78.
[19] Kenna, A., & Basu, B. (2015). A finite element model for pre-stressed or post-tensioned concrete wind turbine towers. Wind Energy, 18(9), 1593-1610. doi:10.1002/we.1778.
[20] Muskulus, M., & Schafhirt, S. (2014). Design optimization of wind turbine support structures-a review. Journal of Ocean and Wind Energy, 1(1), 12-22.
[21] LaNier, M. W. (2005). LWST Phase I project conceptual design study: Evaluation of design and construction approaches for economical hybrid steel/concrete wind turbine towers.. National Renewable Energy Lab (No. NREL/SR-500-36777), Golden, United States.
[2] Eissa, A., El-Helloty, A., & Ehab, A. (2024). Structural Analysis of New Octagonal Pre-Stressed Concrete for on Shore Wind Turbine Tower using Computational Fluid Dynamics (CFD). Zhongguo Kuangye Daxue Xuebao, 29(2), 139-151.
[3] Hasan, A.M.A.S. & Khalil, E.A.B.E. (2020). Analysis and Design of Optimum Pre-Stressed Concrete Wind Turbine Towers. Master Thesis, Arab Academy for Science, Technology & Maritime Transport, Smart Village Campus, Alexandria, Egypt.
[4] Lotfy, I. (2012). Prestressed concrete wind turbine supporting system. Master Thesis, University of Nebraska, Lincoln, United States.
[5] Eissa, A. E., & Hasan, M. A. (2020). Modal analysis of prestressed concrete structural system for wind turbine tower. International Journal of Sciences: Basic Applied Research, 49(2), 108-118.
[6] Lee, S. L., & Shin, S. J. (2022). Structural design optimization of a wind turbine blade using the genetic algorithm. Engineering optimization, 54(12), 2053-2070. doi:10.1080/0305215X.2021.1973450.
[7] Wu, E., Chen, H., Qu, W., Huo, C., Liang, Z., Huang, X., Li, Z., Li, H., He, B., Yang, T., & Shen, Z. (2020). Wind Load Evaluation of Wind Turbine Tower Design. Journal of Physics: Conference Series, 1622(1), 012071. doi:10.1088/1742-6596/1622/1/012071.
[8] Alzoubi, Y., Muciaccia, G., & Ferrara, L. (2025). Advances in Wind Turbine Tower Design and Optimization. Proceedings of the RILEM Spring Convention and Conference 2024. RSCC 2024. RILEM Book series, 56, Springer, Cham, Switzerland. doi:10.1007/978-3-031-70281-5_23.
[9] Nicholson, J. C., Arora, J. S., Goyal, D., & Tinjum, J. M. (2013). Multi-objective structural optimization of wind turbine tower and foundation systems using insight: A process automation and design exploration software. 10th World Congress on Structural and Multidisciplinary Optimization, 19-24 May, 2023, Orlando, United States.
[10] Li, Y., Paik, K. J., Xing, T., & Carrica, P. M. (2012). Dynamic overset CFD simulations of wind turbine aerodynamics. Renewable Energy, 37(1), 285-298. doi:10.1016/j.renene.2011.06.029.
[11] Guo, J., Liu, C., Cao, J., & Jiang, D. (2021). Damage identification of wind turbine blades with deep convolutional neural networks. Renewable Energy, 174, 122–133. doi:10.1016/j.renene.2021.04.040.
[12] Miyake, S., Teske, S., Rispler, J., & Feenstra, M. (2024). Solar and wind energy potential under land-resource constrained conditions in the Group of Twenty (G20). Renewable and Sustainable Energy Reviews, 202, 114622. doi:10.1016/j.rser.2024.114622.
[13] IEC 61400-12 (2017). Wind Turbines Part1:Design Requirements. International Electrotechnical Commission, Geneva, Switzerland.
[14] ASCE/SEI 7-16. (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414248.
[15] ACI 318-14. (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). American Concrete Institute (ACI), Michigan, United States.
[16] IEC 61400–1 (2005). Wind Turbines – Part 1: Design Requirements. International Electrotechnical Commission, Geneva, Switzerland.
[17] Li, Y., Zhang, Y., Timofte, R., Van Gool, L., Yu, L., Li, Y., ... & Wang, X. (2023). NTIRE 2023 challenge on efficient super-resolution: Methods and results. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 17-24 June, 2023, Vancouver, Canada.
[18] Cortés, J. A., Díez, L., Cañete, F. J., Sánchez-Martínez, J. J., & Entrambasaguas, J. T. (2011). Performance analysis of OFDM modulation on indoor broadband PLC channels. Eurasip Journal on Advances in Signal Processing, 2011. doi:10.1186/1687-6180-2011-78.
[19] Kenna, A., & Basu, B. (2015). A finite element model for pre-stressed or post-tensioned concrete wind turbine towers. Wind Energy, 18(9), 1593-1610. doi:10.1002/we.1778.
[20] Muskulus, M., & Schafhirt, S. (2014). Design optimization of wind turbine support structures-a review. Journal of Ocean and Wind Energy, 1(1), 12-22.
[21] LaNier, M. W. (2005). LWST Phase I project conceptual design study: Evaluation of design and construction approaches for economical hybrid steel/concrete wind turbine towers.. National Renewable Energy Lab (No. NREL/SR-500-36777), Golden, United States.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
