Strength, Water Porosity and Sulfuric Acid Performance of Coconut Fiber Reinforced High-Strength Concrete
Abstract
Doi: 10.28991/CEJ-2025-011-04-023
Full Text: PDF
Keywords
References
Deng, Z., Liu, X., Yang, X., Liang, N., Yan, R., Chen, P., Miao, Q., & Xu, Y. (2021). A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads. Structural Concrete, 22(1), 396–409. doi:10.1002/suco.202000006.
Liu, P., Zhou, X., Qian, Q., Berto, F., & Zhou, L. (2020). Dynamic splitting tensile properties of concrete and cement mortar. Fatigue and Fracture of Engineering Materials and Structures, 43(4), 757–770. doi:10.1111/ffe.13162.
Mboungou Londe, G. H., Mwero, J. N., Kanali, C., & Abuodha, S. O. (2024). Investigating the Influence of Raw and Treated Coconut Fibre Obtained from Agricultural Residue on the Strength and Durability Characteristics of High-Strength Concrete. Advances in Civil Engineering, 2024. doi:10.1155/2024/8275876.
Anurangi, J., Herath, M., Galhena, D. T. L., & Epaarachchi, J. (2023). The use of fibre reinforced polymer composites for construction of structural supercapacitors: a review. Advanced Composite Materials, 32(6), 942–986. doi:10.1080/09243046.2023.2180792.
Mahboob, A., Hassanshahi, O., Safi, M., & Majid, T. A. (2024). Experimental investigation of eco-friendly fiber-reinforced concrete using recycled and natural fibers, integrated with recycled aggregates. Advanced Composite Materials, 33, 1101–30. doi:10.1080/09243046.2024.2322799.
Rocha, D. L., Júnior, L. U. D. T., Marvila, M. T., Pereira, E. C., Souza, D., & de Azevedo, A. R. G. (2022). A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian History. Polymers, 14(10), 2043. doi:10.3390/polym14102043.
Teng, S., Afroughsabet, V., & Ostertag, C. P. (2018). Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials, 182, 504–515. doi:10.1016/j.conbuildmat.2018.06.158.
Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S., & Alotman, O. Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174, 713–729. doi:10.1016/j.conbuildmat.2018.04.143.
Aarthipriya, V., & Umarani, C. (2025). An ecofriendly approach to explore the physical and mechanical properties of cement mortar reinforced with Abutilon indicum fibres. Materials Research Express, 12(1), 015102. doi:10.1088/2053-1591/ada7ca.
Chavan, S., & Rao, P. (2016). Utilization of Waste PET bottle fibers in concrete as an Innovation in Building Materials. International Journal of Engineering Research, 5(1), 304-307.
Alomayri, T., & Ali, B. (2023). Effect of plant fiber type and content on the strength and durability performance of high-strength concrete. Construction and Building Materials, 394(132166). doi:10.1016/j.conbuildmat.2023.132166.
Liew, K. M., & Akbar, A. (2020). The recent progress of recycled steel fiber reinforced concrete. Construction and Building Materials, 232(117232). doi:10.1016/j.conbuildmat.2019.117232.
Ahmad, J., & Zhou, Z. (2022). Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Construction and Building Materials, 333, 127353. doi:10.1016/j.conbuildmat.2022.127353.
Jamshaid, H., Mishra, R. K., Raza, A., Hussain, U., Rahman, M. L., Nazari, S., Chandan, V., Muller, M., & Choteborsky, R. (2022). Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials, 15(3), 874. doi:10.3390/ma15030874.
Martinelli, F. R. B., Ribeiro, F. R. C., Marvila, M. T., Monteiro, S. N., Filho, F. da C. G., & Azevedo, A. R. G. de. (2023). A Review of the Use of Coconut Fiber in Cement Composites. Polymers, 15(5), 1309. doi:10.3390/polym15051309.
Zakaria, M., Ahmed, M., Hoque, M. M., & Islam, S. (2017). Scope of using jute fiber for the reinforcement of concrete material. Textiles and Clothing Sustainability, 2(1), 1–10. doi:10.1186/s40689-016-0022-5.
. T. S. V. K. (2016). A Comparative Study of Jute Fiber Reinforced Concrete with Plain Cement Concrete. International Journal of Research in Engineering and Technology, 05(09), 111–116. doi:10.15623/ijret.2016.0509017.
Fokam, C. B., Toumi, E., Kenmeugne, B., Meva’A, L., & Mansouri, K. (2020). Cement mortar reinforced with palm nuts naturals fibers: Study of the mechanical properties. Journal of Composites and Advanced Materials, 30(1), 9–13. doi:10.18280/rcma.300102.
Soltanzadeh, F., Barros, J. A. O., & Santos, R. F. C. (2015). High performance fiber reinforced concrete for the shear reinforcement: Experimental and numerical research. Construction and Building Materials, 77, 94–109. doi:10.1016/j.conbuildmat.2014.12.003.
Nambiar, R. A., & Haridharan, M. K. (2019). Mechanical and durability study of high performance concrete with addition of natural fiber (jute). Materials Today: Proceedings, 46, 4941–4947. doi:10.1016/j.matpr.2020.10.339.
Alsaif, A., Koutas, L., Bernal, S. A., Guadagnini, M., & Pilakoutas, K. (2018). Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Construction and Building Materials, 172, 533–543. doi:10.1016/j.conbuildmat.2018.04.010.
Wuest, J., Denarié, E., Brühwiler, E., Tamarit, L., Kocher, M., & Gallucci, E. (2009). Tomography analysis of fiber distribution and orientation in ultra-high-performance fiber reinforced composites with high-fiber dosages. Experimental Techniques, 33(5), 50–55. doi:10.1111/j.1747-1567.2008.00420.x.
Stähli, P., Custer, R., & Van Mier, J. G. M. (2008). On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Materials and Structures, 41(1), 189–196. doi:10.1617/s11527-007-9229-x.
Tejchman, J., & Kozicki, J. (2010). Experimental and theoretical investigations of steel-fibrous concrete. Springer, Berlin, Germany. doi:10.1007/978-3-642-14603-9.
Eik, M., Lõhmus, K., Tigasson, M., Listak, M., Puttonen, J., & Herrmann, H. (2013). DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. Journal of Materials Science, 48(10), 3745–3759. doi:10.1007/s10853-013-7174-3.
Revilla-Cuesta, V., Faleschini, F., Pellegrino, C., Skaf, M., & Ortega-López, V. (2024). Water transport and porosity trends of concrete containing integral additions of raw-crushed wind-turbine blade. Developments in the Built Environment, 17, 100374. doi:10.1016/j.dibe.2024.100374.
Santamaría, A., Orbe, A., San José, J. T., & González, J. J. (2018). A study on the durability of structural concrete incorporating electric steelmaking slags. Construction and Building Materials, 161, 94–111. doi:10.1016/j.conbuildmat.2017.11.121.
Cantero, B., Sáez del Bosque, I. F., Sánchez de Rojas, M. I., Matías, A., & Medina, C. (2022). Durability of concretes bearing construction and demolition waste as cement and coarse aggregate substitutes. Cement and Concrete Composites, 134, 104722. doi:10.1016/j.cemconcomp.2022.104722.
Faleschini, F., Alejandro Fernández-Ruíz, M., Zanini, M. A., Brunelli, K., Pellegrino, C., & Hernández-Montes, E. (2015). High performance concrete with electric arc furnace slag as aggregate: Mechanical and durability properties. Construction and Building Materials, 101, 113–121. doi:10.1016/j.conbuildmat.2015.10.022.
Vu, V. H., Tran, B. V., Hoang, V. H., & Nguyen, T. H. G. (2022). The Effect of Porosity on the Elastic Modulus and Strength of Pervious Concrete. Lecture Notes in Mechanical Engineering, 823–829. doi:10.1007/978-981-16-3239-6_63.
Revilla-Cuesta, V., Skaf, M., Santamaría, A., Romera, J. M., & Ortega-López, V. (2022). Elastic stiffness estimation of aggregate–ITZ system of concrete through matrix porosity and volumetric considerations: explanation and exemplification. Archives of Civil and Mechanical Engineering, 22(2), 59. doi:10.1007/s43452-022-00382-z.
Abhilash, P. P., Nayak, D. K., Sangoju, B., Kumar, R., & Kumar, V. (2021). Effect of nano-silica in concrete; a review. Construction and Building Materials, 278, 122347. doi:10.1016/j.conbuildmat.2021.122347.
Moore, A. J., Bakera, A. T., & Alexander, M. G. (2021). A critical review of the Water Sorptivity Index (WSI) parameter for potential durability assessment: Can WSI be considered in isolation of porosity? Journal of the South African Institution of Civil Engineering, 63(2), 27–34. doi:10.17159/2309-8775/2021/v63n2a4.
Rahman, S., Grasley, Z., Masad, E., Zollinger, D., Iyengar, S., & Kogbara, R. (2016). Simulation of Mass, Linear Momentum, and Energy Transport in Concrete with Varying Moisture Content during Cooling to Cryogenic Temperatures. Transport in Porous Media, 112(1), 139–166. doi:10.1007/s11242-016-0636-8.
Sivamani, J., & Renganathan, N. T. (2022). Effect of fine recycled aggregate on the strength and durability properties of concrete modified through two-stage mixing approach. Environmental Science and Pollution Research, 29(57), 85869–85882. doi:10.1007/s11356-021-14420-5.
Cantero, B., Sáez del Bosque, I. F., Matías, A., Sánchez de Rojas, M. I., & Medina, C. (2020). Water transport mechanisms in concretes bearing mixed recycled aggregates. Cement and Concrete Composites, 107, 103486. doi:10.1016/j.cemconcomp.2019.103486.
Villagrán Zaccardi, Y. A., Alderete, N. M., & De Belie, N. (2017). Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time. Cement and Concrete Research, 100, 153–165. doi:10.1016/j.cemconres.2017.07.003.
Joorabchian, S. M. (2010). Durability of concrete exposed to sulfuric acid attack. Doctoral Dissertation, Toronto Metropolitan University, Toronto, Canada.
Vélez, E., Rodríguez, R., Yanchapanta Gómez, N. B., Mora, E. D., Hernández, L., Albuja-Sánchez, J., & Calvo, M. I. (2022). Coconut-Fiber Composite Concrete: Assessment of Mechanical Performance and Environmental Benefits. Fibers, 10(11), 96. doi:10.3390/fib10110096.
Lv, C., & Liu, J. (2023). Alkaline Degradation of Plant Fiber Reinforcements in Geopolymer: A Review. Molecules, 28(4), 1868. doi:10.3390/molecules28041868.
Rocha Ferreira, S., Ukrainczyk, N., Defáveri do Carmo e Silva, K., Eduardo Silva, L., & Koenders, E. (2021). Effect of microcrystalline cellulose on geopolymer and Portland cement pastes mechanical performance. Construction and Building Materials, 288, 123053. doi:10.1016/j.conbuildmat.2021.123053.
da Costa Correia, V., Ardanuy, M., Claramunt, J., & Savastano, H. (2019). Assessment of chemical and mechanical behavior of bamboo pulp and Nano fibrillated cellulose exposed to alkaline environments. Cellulose, 26(17), 9269–9285. doi:10.1007/s10570-019-02703-7.
Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1–16. doi:10.1016/j.cemconres.2015.02.019.
Labib, W. A. (2022). Plant-based fibres in cement composites: A conceptual framework. Journal of Engineered Fibers and Fabrics, 17. doi:10.1177/15589250221078922.
Hamada, H. M., Shi, J., Al Jawahery, M. S., Majdi, A., Yousif, S. T., & Kaplan, G. (2023). Application of natural fibres in cement concrete: A critical review. Materials Today Communications, 35, 105833. doi:10.1016/j.mtcomm.2023.105833.
Antwi-Afari, B. A., Mutuku, R., Kabubo, C., Mwero, J., & Mengo, W. K. (2024). Influence of fiber treatment methods on the mechanical properties of high strength concrete reinforced with sisal fibers. Heliyon, 10(8), e29760. doi:10.1016/j.heliyon.2024.e29760.
Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153–2183. doi:10.1177/1528083716654468.
Yavuz Bayraktar, O., Kaplan, G., Shi, J., Benli, A., Bodur, B., & Turkoglu, M. (2023). The effect of steel fiber aspect-ratio and content on the fresh, flexural, and mechanical performance of concrete made with recycled fine aggregate. Construction and Building Materials, 368, 130497. doi:10.1016/j.conbuildmat.2023.130497.
Tran, N. P., Gunasekara, C., Law, D. W., Houshyar, S., & Setunge, S. (2022). Microstructural characterisation of cementitious composite incorporating polymeric fibre: A comprehensive review. Construction and Building Materials, 335, 127497. doi:10.1016/j.conbuildmat.2022.127497.
Ortega-López, V., Revilla-Cuesta, V., Santamaría, A., Orbe, A., & Skaf, M. (2022). Microstructure and Dimensional Stability of Slag-Based High-Workability Concrete with Steelmaking Slag Aggregate and Fibers. Journal of Materials in Civil Engineering, 34(9), 04022224. doi:10.1061/(asce)mt.1943-5533.0004372.
Camille, C., Kahagala Hewage, D., Mirza, O., Mashiri, F., Kirkland, B., & Clarke, T. (2021). Performance behaviour of macro-synthetic fibre reinforced concrete subjected to static and dynamic loadings for sleeper applications. Construction and Building Materials, 270, 121469. doi:10.1016/j.conbuildmat.2020.121469.
Xie, J., Kou, S. cong, Ma, H., Long, W. J., Wang, Y., & Ye, T. H. (2021). Advances on properties of fiber reinforced recycled aggregate concrete: Experiments and models. Construction and Building Materials, 277, 122345. doi:10.1016/j.conbuildmat.2021.122345.
Muthukumarana, T. V., Arachchi, M. A. V. H. M., Somarathna, H. M. C. C., & Raman, S. N. (2023). A review on the variation of mechanical properties of carbon fibre-reinforced concrete. Construction and Building Materials, 366, 130173. doi:10.1016/j.conbuildmat.2022.130173.
EN 197-1. (2000). Cement - Part 1: Composition, Specifications and Conformity Criteria for Common Cements Ciment. European Standard, 1–29.
ASTM C33. (2013). Standard specification for concrete aggregates. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
C136/C136M–14. (2014). Standard test method for sieve analysis of fine and coarse aggregates. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
BS812-2:1995. (2004). Testing aggregates Part 2. Methods of determination of density Corrected. British Standard, London, United Kingdom.
ASTM C127. (2004). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
BS 812-112:1990. (1990). Testing aggregates- part 112: Methods for determination of aggregate impact value (AIV). British Standard, London, United Kingdom.
BS 812-110: 1990. (1990). Testing aggregates - part 110: Methods for determination of aggregate crushing value (ACV). British Standard, London, United Kingdom.
ACI 211.4R. (2008). Guide for Selecting Proportions for High-strength Concrete Using Portland Cement and Other Cementitious Materials. ACI Committee 211, 1–25.
BS EN 12390-3. (2009). Testing hardened concrete - Part 3: Compressive strength of test specimens. BSI Standards, 38(10), 18.
BS EN 12390-6. (2009). Testing hardened concrete - Part 6: Tensile splitting strength of test specimens. BSI Standards, 1–14.
BS EN 12390-5. (2009). Testing hardened concrete - Part 5: Flexural strength of test specimens. BSI Standards, 1–22.
ASTM C1018. (1998). Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). American Society for Testing and Materials (ASTM), Pennsylvania, United States.
Daukšys, M., Ivanauskas, E., Juočiunas, S., Pupeikis, D., & Šeduikyte, L. (2012). The assessment of prediction methodology of concrete freezing and thawing resistance. Medziagotyra, 18(4), 403–409. doi:10.5755/j01.ms.18.4.3105.
ASTM C 267. (2001). Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
Raju, J. S. N., Depoures, M. V., & Kumaran, P. (2021). Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. International Journal of Biological Macromolecules, 186, 886–896. doi:10.1016/j.ijbiomac.2021.07.061.
Mulinari, D. R., Baptista, C. A. R. P., Souza, J. V. C., & Voorwald, H. J. C. (2011). Mechanical properties of coconut fibers reinforced polyester composites. Procedia Engineering, 10, 2074–2079. doi:10.1016/j.proeng.2011.04.343.
Zamboni Schiavon, J., & de Oliveira Andrade, J. J. (2023). Comparison between alternative chemical treatments on coir fibers for application in cementitious materials. Journal of Materials Research and Technology, 25, 4634–4649. doi:10.1016/j.jmrt.2023.06.210.
Reddy, K. O., Reddy, K. R. N., Zhang, J., Zhang, J., & Varada Rajulu, A. (2013). Effect of Alkali Treatment on the Properties of Century Fiber. Journal of Natural Fibers, 10(3), 282–296. doi:10.1080/15440478.2013.800812.
ASTM C143/C143M. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A. F., Althoey, F., El Ouni, M. H., & El-Shorbagy, M. A. (2022). Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials, 15(10), 3601. doi:10.3390/ma15103601.
Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., Alyousef, R., Abduljabbar, H. Al, & Sufian, M. (2020). Effect of coconut fiber length and content on properties of high strength concrete. Materials, 13(5), 1075. doi:10.3390/ma13051075.
Ahmad, J., Zaid, O., Siddique, M. S., Aslam, F., Alabduljabbar, H., & Khedher, K. M. (2021). Mechanical and durability characteristics of sustainable coconut fibers reinforced concrete with incorporation of marble powder. Materials Research Express, 8(7), 075505. doi:10.1088/2053-1591/ac10d3.
Sivakumaresa Chockalingam, L. N., & Rymond, N. M. (2022). Strength and Durability Characteristics of Coir, Kenaf and Polypropylene Fibers Reinforced High Performance Concrete. Journal of Natural Fibers, 19(13), 6692–6700. doi:10.1080/15440478.2021.1929656.
Okeola, A. A., Abuodha, S. O., & Mwero, J. (2018). Experimental investigation of the physical and mechanical properties of sisal fiber-reinforced concrete. Fibers, 6(3), 53. doi:10.3390/fib6030053.
Ren, G., Yao, B., Huang, H., & Gao, X. (2021). Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Construction and Building Materials, 286, 122958. doi:10.1016/j.conbuildmat.2021.122958.
Bentchikou, M., Guidoum, A., Scrivener, K., Silhadi, K., & Hanini, S. (2012). Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Construction and Building Materials, 34, 451–456. doi:10.1016/j.conbuildmat.2012.02.097.
Bui, H., Sebaibi, N., Boutouil, M., & Levacher, D. (2020). Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers, 8(6), 37. doi:10.3390/FIB8060037.
Naamandadin, N. A., Rosdi, M. S., Mustafa, W. A., Shahrol Aman, M. N. S., & Saidi, S. A. (2020). Mechanical behaviour on concrete of coconut coir fiber as additive. IOP Conference Series: Materials Science and Engineering, 932(1), 012098. doi:10.1088/1757-899X/932/1/012098.
DOI: 10.28991/CEJ-2025-011-04-023
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Gervany Hurlich Mboungou Londe

This work is licensed under a Creative Commons Attribution 4.0 International License.