Smart Roundabout Coordination Systems for Sustainable Urban Mobility
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-013
Full Text: PDF
Halawani, A. T. M. (2025). Smart Roundabout Coordination Systems for Sustainable Urban Mobility. Civil Engineering Journal, 11(2), 623–634. https://doi.org/10.28991/CEJ-2025-011-02-013
[1] Levy, J. I., Buonocore, J. J., & von Stackelberg, K. (2010). Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environmental Health, 9(1), 1-12. doi:10.1186/1476-069x-9-65.
[2] Verbavatz, V., & Barthelemy, M. (2019). Critical factors for mitigating car traffic in cities. PLOS ONE, 14(7), e0219559. doi:10.1371/journal.pone.0219559.
[3] Moslem, S., Saraji, M. K., Mardani, A., Alkharabsheh, A., Duleba, S., & Esztergár-Kiss, D. (2023). A systematic review of analytic hierarchy process applications to solve transportation problems: from 2003 to 2022. IEEE Access, 11, 11973-11990. doi:10.1109/ACCESS.2023.3234298.
[4] Xu, H., Zhuo, Z., Chen, J., & Fang, X. (2020). Traffic signal coordination control along oversaturated two-way arterials. PeerJ Computer Science, 6, 319. doi:10.7717/PEERJ-CS.319.
[5] Tao, F., Shi, Q., & Yu, L. (2011). Evaluation of Effectiveness of Coordinated Signal Control in Reducing Vehicle Emissions during Peak Hours versus Nonpeak Hours. Transportation Research Record: Journal of the Transportation Research Board, 2233(1), 45–52. doi:10.3141/2233-06.
[6] Zhang, G., Fan, W., Meng, T., Jiang, X., & Chen, G. (2018). Microscopic evaluation of traffic safety at signal coordinated intersections: A before–after study. Traffic Injury Prevention, 19(8), 867–873. doi:10.1080/15389588.2018.1525611.
[7] Andalibian, R., & Tian, Z. (2012). Signal Timing and Coordination Strategies under Varying Traffic Demands (No. 236-11-803). Department of Transportation, Nevada, United States.
[8] Tumminello, M. L., Macioszek, E., & Graní , A. (2024). Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead. Sustainability (Switzerland), 16(10), 4079. doi:10.3390/su16104079.
[9] Robinson, B. W., Rodegerdts, L., Scarborough, W., Kittelson, W., Troutbeck, R., Brilon, W., Bondzio, L., Courage, K., Kyte, M., Mason, J., Flannery, A., Myers, E., Bunker, J., & Jacquemart, G. (2000). Roundabouts: An Informational Guide (No. FHWA-RD-00-067; Project 2425), Federal Highway Administration, Washington, United States.
[10] Wong, S. C., Sze, N. N., Loo, B. P. Y., Chow, A. S. Y., Lo, H. K., & Hung, W. T. (2012). Performance evaluations of the spiral-marking roundabouts in Hong Kong. Journal of Transportation Engineering, 138(11), 1377–1387. doi:10.1061/(ASCE)TE.1943-5436.0000433.
[11] Höglund, P. G. (1994). Alternative intersection design - a possible way of reducing air pollutant emissions from road and street traffic? Science of the Total Environment, The, 146–147(C), 35–44. doi:10.1016/0048-9697(94)90217-8.
[12] Salamati, K., Rouphail, N. M., Frey, H. C., Liu, B., & Schroeder, B. J. (2015). Simplified method for comparing emissions in roundabouts and at signalized intersections. Transportation Research Record, 2517(1), 48–60. doi:10.3141/2517-06.
[13] Chevallier, E., Can, A., Nadji, M., & Leclercq, L. (2009). Improving noise assessment at intersections by modeling traffic dynamics. Transportation Research Part D: Transport and Environment, 14(2), 100–110. doi:10.1016/j.trd.2008.09.014.
[14] Várhelyi, A. (2002). The effects of small roundabouts on emissions and fuel consumption: A case study. Transportation Research Part D: Transport and Environment, 7(1), 65–71. doi:10.1016/S1361-9209(01)00011-6.
[15] Fernandes, P., Ferreira, E., Macedo, E., & Coelho, M. C. (2024). Unraveling roundabout dynamics: Analysis of driving behavior, vehicle performance, and exhaust emissions. Transportation Research Part D: Transport and Environment, 133, 104308. doi:10.1016/j.trd.2024.104308.
[16] Isebrands, H., Hallmark, S., Fitzsimmons, E., & Stroda, J. (2008). Toolbox to evaluate the impacts of roundabouts on a corridor or roadway network (No. MN/RC 2008-24), Center for Transportation Research and Education, Iowa State University, Ames, United States.
[17] TDOT. (2024). Roundabout Design Reference Guide, Engineering Division, Production Support. Tennessee Department of Transportation, Nashville, United States. Available online: www.tn.gov/tdot/engineering-division/engineering-production-support.html (accessed on February 2025).
[18] Hallmark, S. L., Fitzsimmons, E. J., Isebrands, H. N., & Giese, K. L. (2010). Roundabouts in signalized corridors: Evaluation of traffic flow impacts. Transportation Research Record, 2182(2182), 139–147. doi:10.3141/2182-18.
[19] Geroliminis, N., & Skabardonis, A. (2005). Prediction of arrival profiles and queue lengths along signalized arterials by using a markov decision process. Transportation Research Record, 1934, 116–124. doi:10.3141/1934-12.
[20] Mashros, N., Hainin, M. R., Hassan, N. A., Yunus, N. Z. M., & Kadir, M. A. A. (2014). Exploring the pattern of platoon dispersion caused by traffic signal. Jurnal Teknologi, 71(3), 7–13. doi:10.11113/jt.v71.3751.
[21] Texas Department of Transportation. (2020). Traffic Signals Manual (TSM): Coordinated Operation. Texas Department of Transportation, Traffic Safety Division, Austin, United States.
[22] Shen, L., Liu, R., Yao, Z., Wu, W., & Yang, H. (2019). Development of Dynamic Platoon Dispersion Models for Predictive Traffic Signal Control. IEEE Transactions on Intelligent Transportation Systems, 20(2), 431–440. doi:10.1109/TITS.2018.2815182.
[23] Altamimi, H., Varga, I., & Tettamanti, T. (2023). Urban Platooning Combined with Dynamic Traffic Lights. Machines, 11(9), 920. doi:10.3390/machines11090920.
[24] Urbanik, T., Tanaka, A., Lozner, B., Lindstrom, E., Lee, K., Quayle, S., ... & Bullock, D. (2015). Signal timing manual (Volume 1). Washington, Transportation Research Board, Washington, United States.
[25] Wang, H., & Peng, X. (2022). Coordinated Control Model for Oversaturated Arterial Intersections. IEEE Transactions on Intelligent Transportation Systems, 23(12), 24157–24175. doi:10.1109/TITS.2022.3199609.
[26] Deng, M., Li, P., Hu, X., & Xu, L. (2024). Multi-objective arterial coordination control method based on induction control and vehicle speed guidance. Measurement and Control. doi:10.1177/00202940241233504.
[27] Wang, W., Zang, Y., Zhang, W., Xu, Y., Liang, J., Zhang, H., Andrew, L., Vu, H., & Gong, C. (2024). Traffic Light Control to Form Progressive Movements along an Arterial. 2024 European Control Conference (ECC), 3790–3795. doi:10.23919/ecc64448.2024.10590781.
[28] Zhang, Z., Cao, Q., Chen, W., Ren, G., Hu, T., & Wu, W. (2024). Arterial Progression Signal Optimization for Speed Uncertainty Scenarios. KSCE Journal of Civil Engineering, 28(10), 4588–4602. doi:10.1007/s12205-024-0031-x.
[29] Stevanovic, A., Stevanovic, J., Zhang, K., & Batterman, S. (2009). Optimizing traffic control to reduce fuel consumption and vehicular emissions: Integrated approach with VISSIM, CMEM, and VISGAOST. Transportation Research Record, 2128, 105–113. doi:10.3141/2128-11.
[30] Zhao, L., Rilett, L. R., & Tufuor, E. (2017). Calibrating the Robertson's Platoon dispersion model on a coordinated corridor with advance warning flashers. Transportation Research Record, 2623(1), 10–18. doi:10.3141/2623-02.
[31] Praveen, P. S., & Ashalatha, R. (2020). Identification of platoon dispersion pattern under heterogeneous traffic conditions. Case Studies on Transport Policy, 8(1), 101–111. doi:10.1016/j.cstp.2018.06.007.
[32] Distefano, N., & Leonardi, S. (2019). Experimental investigation of the effect of roundabouts on noise emission level from motor vehicles. Noise Control Engineering Journal, 67(4), 282–294. doi:10.3397/1/376725.
[33] Daniels, S., Brijs, T., Nuyts, E., & Wets, G. (2010). Explaining variation in safety performance of roundabouts. Accident Analysis and Prevention, 42(2), 393–402. doi:10.1016/j.aap.2009.08.019.
[34] Montella, A. (2011). Identifying crash contributory factors at urban roundabouts and using association rules to explore their relationships to different crash types. Accident Analysis and Prevention, 43(4), 1451–1463. doi:10.1016/j.aap.2011.02.023.
[35] Ahn, K., Kronprasert, N., & Rakha, H. (2009). Energy and environmental assessment of high-speed roundabouts. Transportation Research Record, 2123, 54–65. doi:10.3141/2123-07.
[36] Krogscheepers, J. C., & Watters, M. (2014). Roundabouts along rural arterials in South Africa. Transportation Research Board 93rd Annual Meeting, 12-16 January, 2014, Washington, United States.
[37] Bared, J., & Edara, P. K. (2005). Simulated capacity of roundabouts and impact of roundabout within a progressed signalized road. National Roundabout Conference, 22-25 May, 2005, Vail, United States.
[38] Teklu, F., Sumalee, A., & Watling, D. (2007). A genetic algorithm approach for optimizing traffic control signals considering routing. Computer-Aided Civil and Infrastructure Engineering, 22(1), 31–43. doi:10.1111/j.1467-8667.2006.00468.x.
[39] Fan, J., Najafi, A., Sarang, J., & Li, T. (2023). Analyzing and Optimizing the Emission Impact of Intersection Signal Control in Mixed Traffic. Sustainability (Switzerland), 15(22), 16118. doi:10.3390/su152216118.
[40] Webster, F. V. (1958). Trafï¬c signal settings. Transportation Research Board, Washington, United States.
[41] Akcelik, R. (1981). Traffic signals: capacity and timing analysis. Transportation Research Part A: General, 15(6), 505. doi:10.1016/0191-2607(81)90135-7.
[42] Bing, B., & Carter, A. (1995). SCOOT: The world's foremost adaptive TRAFFIC control system. Traffic Technology International'95, UK and International Press, Dorking, United Kingdom.
[43] Sims, A. G., & Dobinson, K. W. (1980). The Sydney Coordinated Adaptive Traffic (SCAT) System Philosophy and Benefits. IEEE Transactions on Vehicular Technology, 29(2), 130–137. doi:10.1109/T-VT.1980.23833.
[44] Gartner, N. H. (1982). Development and Testing of a Demand-Responsive Strategy for Traffic Signal Control. 1982 American Control Conference. doi:10.23919/acc.1982.4787916.
[45] Henry, J. J., Farges, J. L., & Tuffal, J. (1984). The Prodyn Real Time Traffic Algorithm. Control in Transportation Systems, 305–310, Pergamon, Oxford, United Kingdom. doi:10.1016/b978-0-08-029365-3.50048-1.
[46] Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: architecture, algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6), 415–432. doi:10.1016/s0968-090x(00)00047-4.
[47] Brilon, W., & Wietholt, T. (2013). Experiences with adaptive signal control in Germany. Transportation Research Record, 2356, 9–16. doi:10.3141/2356-02.
[48] Kabit, M. R., Chiew, W. Y., Chai, A., Tirau, L. S., & Bujang, Z. (2023). Evaluating The Effects of Signal Control Applications on Roundabout's LOS Performance Using VISSIM Microsimulation Model. International Journal of Integrated Engineering, 15(9), 13–22. doi:10.30880/ijie.2023.15.09.002.
[49] Gunarathne, D., Amarasingha, N., & Wickramasighe, V. (2023). Traffic Signal Controller Optimization Through VISSIM to Minimize Traffic Congestion, CO and NOx Emissions, and Fuel Consumption. Science, Engineering and Technology, 3(1), 9–21. doi:10.54327/set2023/v3.i1.56.
[50] Wang, Z., Wu, G., & Scora, G. (2020). MOVESTAR: An open-source vehicle fuel and emission model based on USEPA MOVES. arXiv preprint, arXiv:2008.04986. doi:10.48550/arXiv.20085.04986.
[51] Saha, A., Chandra, S., & Ghosh, I. (2019). Modeling Platoon Dispersion at Signalized Intersections in Mixed Traffic Scenario. Arabian Journal for Science and Engineering, 44(5), 4829–4838. doi:10.1007/s13369-018-3568-5.
[52] Husch, D., & Albeck, J. (2003). Trafficware Intersection Capacity Utilization. Trafficware Corporation, Albany, United States.
[2] Verbavatz, V., & Barthelemy, M. (2019). Critical factors for mitigating car traffic in cities. PLOS ONE, 14(7), e0219559. doi:10.1371/journal.pone.0219559.
[3] Moslem, S., Saraji, M. K., Mardani, A., Alkharabsheh, A., Duleba, S., & Esztergár-Kiss, D. (2023). A systematic review of analytic hierarchy process applications to solve transportation problems: from 2003 to 2022. IEEE Access, 11, 11973-11990. doi:10.1109/ACCESS.2023.3234298.
[4] Xu, H., Zhuo, Z., Chen, J., & Fang, X. (2020). Traffic signal coordination control along oversaturated two-way arterials. PeerJ Computer Science, 6, 319. doi:10.7717/PEERJ-CS.319.
[5] Tao, F., Shi, Q., & Yu, L. (2011). Evaluation of Effectiveness of Coordinated Signal Control in Reducing Vehicle Emissions during Peak Hours versus Nonpeak Hours. Transportation Research Record: Journal of the Transportation Research Board, 2233(1), 45–52. doi:10.3141/2233-06.
[6] Zhang, G., Fan, W., Meng, T., Jiang, X., & Chen, G. (2018). Microscopic evaluation of traffic safety at signal coordinated intersections: A before–after study. Traffic Injury Prevention, 19(8), 867–873. doi:10.1080/15389588.2018.1525611.
[7] Andalibian, R., & Tian, Z. (2012). Signal Timing and Coordination Strategies under Varying Traffic Demands (No. 236-11-803). Department of Transportation, Nevada, United States.
[8] Tumminello, M. L., Macioszek, E., & Graní , A. (2024). Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead. Sustainability (Switzerland), 16(10), 4079. doi:10.3390/su16104079.
[9] Robinson, B. W., Rodegerdts, L., Scarborough, W., Kittelson, W., Troutbeck, R., Brilon, W., Bondzio, L., Courage, K., Kyte, M., Mason, J., Flannery, A., Myers, E., Bunker, J., & Jacquemart, G. (2000). Roundabouts: An Informational Guide (No. FHWA-RD-00-067; Project 2425), Federal Highway Administration, Washington, United States.
[10] Wong, S. C., Sze, N. N., Loo, B. P. Y., Chow, A. S. Y., Lo, H. K., & Hung, W. T. (2012). Performance evaluations of the spiral-marking roundabouts in Hong Kong. Journal of Transportation Engineering, 138(11), 1377–1387. doi:10.1061/(ASCE)TE.1943-5436.0000433.
[11] Höglund, P. G. (1994). Alternative intersection design - a possible way of reducing air pollutant emissions from road and street traffic? Science of the Total Environment, The, 146–147(C), 35–44. doi:10.1016/0048-9697(94)90217-8.
[12] Salamati, K., Rouphail, N. M., Frey, H. C., Liu, B., & Schroeder, B. J. (2015). Simplified method for comparing emissions in roundabouts and at signalized intersections. Transportation Research Record, 2517(1), 48–60. doi:10.3141/2517-06.
[13] Chevallier, E., Can, A., Nadji, M., & Leclercq, L. (2009). Improving noise assessment at intersections by modeling traffic dynamics. Transportation Research Part D: Transport and Environment, 14(2), 100–110. doi:10.1016/j.trd.2008.09.014.
[14] Várhelyi, A. (2002). The effects of small roundabouts on emissions and fuel consumption: A case study. Transportation Research Part D: Transport and Environment, 7(1), 65–71. doi:10.1016/S1361-9209(01)00011-6.
[15] Fernandes, P., Ferreira, E., Macedo, E., & Coelho, M. C. (2024). Unraveling roundabout dynamics: Analysis of driving behavior, vehicle performance, and exhaust emissions. Transportation Research Part D: Transport and Environment, 133, 104308. doi:10.1016/j.trd.2024.104308.
[16] Isebrands, H., Hallmark, S., Fitzsimmons, E., & Stroda, J. (2008). Toolbox to evaluate the impacts of roundabouts on a corridor or roadway network (No. MN/RC 2008-24), Center for Transportation Research and Education, Iowa State University, Ames, United States.
[17] TDOT. (2024). Roundabout Design Reference Guide, Engineering Division, Production Support. Tennessee Department of Transportation, Nashville, United States. Available online: www.tn.gov/tdot/engineering-division/engineering-production-support.html (accessed on February 2025).
[18] Hallmark, S. L., Fitzsimmons, E. J., Isebrands, H. N., & Giese, K. L. (2010). Roundabouts in signalized corridors: Evaluation of traffic flow impacts. Transportation Research Record, 2182(2182), 139–147. doi:10.3141/2182-18.
[19] Geroliminis, N., & Skabardonis, A. (2005). Prediction of arrival profiles and queue lengths along signalized arterials by using a markov decision process. Transportation Research Record, 1934, 116–124. doi:10.3141/1934-12.
[20] Mashros, N., Hainin, M. R., Hassan, N. A., Yunus, N. Z. M., & Kadir, M. A. A. (2014). Exploring the pattern of platoon dispersion caused by traffic signal. Jurnal Teknologi, 71(3), 7–13. doi:10.11113/jt.v71.3751.
[21] Texas Department of Transportation. (2020). Traffic Signals Manual (TSM): Coordinated Operation. Texas Department of Transportation, Traffic Safety Division, Austin, United States.
[22] Shen, L., Liu, R., Yao, Z., Wu, W., & Yang, H. (2019). Development of Dynamic Platoon Dispersion Models for Predictive Traffic Signal Control. IEEE Transactions on Intelligent Transportation Systems, 20(2), 431–440. doi:10.1109/TITS.2018.2815182.
[23] Altamimi, H., Varga, I., & Tettamanti, T. (2023). Urban Platooning Combined with Dynamic Traffic Lights. Machines, 11(9), 920. doi:10.3390/machines11090920.
[24] Urbanik, T., Tanaka, A., Lozner, B., Lindstrom, E., Lee, K., Quayle, S., ... & Bullock, D. (2015). Signal timing manual (Volume 1). Washington, Transportation Research Board, Washington, United States.
[25] Wang, H., & Peng, X. (2022). Coordinated Control Model for Oversaturated Arterial Intersections. IEEE Transactions on Intelligent Transportation Systems, 23(12), 24157–24175. doi:10.1109/TITS.2022.3199609.
[26] Deng, M., Li, P., Hu, X., & Xu, L. (2024). Multi-objective arterial coordination control method based on induction control and vehicle speed guidance. Measurement and Control. doi:10.1177/00202940241233504.
[27] Wang, W., Zang, Y., Zhang, W., Xu, Y., Liang, J., Zhang, H., Andrew, L., Vu, H., & Gong, C. (2024). Traffic Light Control to Form Progressive Movements along an Arterial. 2024 European Control Conference (ECC), 3790–3795. doi:10.23919/ecc64448.2024.10590781.
[28] Zhang, Z., Cao, Q., Chen, W., Ren, G., Hu, T., & Wu, W. (2024). Arterial Progression Signal Optimization for Speed Uncertainty Scenarios. KSCE Journal of Civil Engineering, 28(10), 4588–4602. doi:10.1007/s12205-024-0031-x.
[29] Stevanovic, A., Stevanovic, J., Zhang, K., & Batterman, S. (2009). Optimizing traffic control to reduce fuel consumption and vehicular emissions: Integrated approach with VISSIM, CMEM, and VISGAOST. Transportation Research Record, 2128, 105–113. doi:10.3141/2128-11.
[30] Zhao, L., Rilett, L. R., & Tufuor, E. (2017). Calibrating the Robertson's Platoon dispersion model on a coordinated corridor with advance warning flashers. Transportation Research Record, 2623(1), 10–18. doi:10.3141/2623-02.
[31] Praveen, P. S., & Ashalatha, R. (2020). Identification of platoon dispersion pattern under heterogeneous traffic conditions. Case Studies on Transport Policy, 8(1), 101–111. doi:10.1016/j.cstp.2018.06.007.
[32] Distefano, N., & Leonardi, S. (2019). Experimental investigation of the effect of roundabouts on noise emission level from motor vehicles. Noise Control Engineering Journal, 67(4), 282–294. doi:10.3397/1/376725.
[33] Daniels, S., Brijs, T., Nuyts, E., & Wets, G. (2010). Explaining variation in safety performance of roundabouts. Accident Analysis and Prevention, 42(2), 393–402. doi:10.1016/j.aap.2009.08.019.
[34] Montella, A. (2011). Identifying crash contributory factors at urban roundabouts and using association rules to explore their relationships to different crash types. Accident Analysis and Prevention, 43(4), 1451–1463. doi:10.1016/j.aap.2011.02.023.
[35] Ahn, K., Kronprasert, N., & Rakha, H. (2009). Energy and environmental assessment of high-speed roundabouts. Transportation Research Record, 2123, 54–65. doi:10.3141/2123-07.
[36] Krogscheepers, J. C., & Watters, M. (2014). Roundabouts along rural arterials in South Africa. Transportation Research Board 93rd Annual Meeting, 12-16 January, 2014, Washington, United States.
[37] Bared, J., & Edara, P. K. (2005). Simulated capacity of roundabouts and impact of roundabout within a progressed signalized road. National Roundabout Conference, 22-25 May, 2005, Vail, United States.
[38] Teklu, F., Sumalee, A., & Watling, D. (2007). A genetic algorithm approach for optimizing traffic control signals considering routing. Computer-Aided Civil and Infrastructure Engineering, 22(1), 31–43. doi:10.1111/j.1467-8667.2006.00468.x.
[39] Fan, J., Najafi, A., Sarang, J., & Li, T. (2023). Analyzing and Optimizing the Emission Impact of Intersection Signal Control in Mixed Traffic. Sustainability (Switzerland), 15(22), 16118. doi:10.3390/su152216118.
[40] Webster, F. V. (1958). Trafï¬c signal settings. Transportation Research Board, Washington, United States.
[41] Akcelik, R. (1981). Traffic signals: capacity and timing analysis. Transportation Research Part A: General, 15(6), 505. doi:10.1016/0191-2607(81)90135-7.
[42] Bing, B., & Carter, A. (1995). SCOOT: The world's foremost adaptive TRAFFIC control system. Traffic Technology International'95, UK and International Press, Dorking, United Kingdom.
[43] Sims, A. G., & Dobinson, K. W. (1980). The Sydney Coordinated Adaptive Traffic (SCAT) System Philosophy and Benefits. IEEE Transactions on Vehicular Technology, 29(2), 130–137. doi:10.1109/T-VT.1980.23833.
[44] Gartner, N. H. (1982). Development and Testing of a Demand-Responsive Strategy for Traffic Signal Control. 1982 American Control Conference. doi:10.23919/acc.1982.4787916.
[45] Henry, J. J., Farges, J. L., & Tuffal, J. (1984). The Prodyn Real Time Traffic Algorithm. Control in Transportation Systems, 305–310, Pergamon, Oxford, United Kingdom. doi:10.1016/b978-0-08-029365-3.50048-1.
[46] Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: architecture, algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6), 415–432. doi:10.1016/s0968-090x(00)00047-4.
[47] Brilon, W., & Wietholt, T. (2013). Experiences with adaptive signal control in Germany. Transportation Research Record, 2356, 9–16. doi:10.3141/2356-02.
[48] Kabit, M. R., Chiew, W. Y., Chai, A., Tirau, L. S., & Bujang, Z. (2023). Evaluating The Effects of Signal Control Applications on Roundabout's LOS Performance Using VISSIM Microsimulation Model. International Journal of Integrated Engineering, 15(9), 13–22. doi:10.30880/ijie.2023.15.09.002.
[49] Gunarathne, D., Amarasingha, N., & Wickramasighe, V. (2023). Traffic Signal Controller Optimization Through VISSIM to Minimize Traffic Congestion, CO and NOx Emissions, and Fuel Consumption. Science, Engineering and Technology, 3(1), 9–21. doi:10.54327/set2023/v3.i1.56.
[50] Wang, Z., Wu, G., & Scora, G. (2020). MOVESTAR: An open-source vehicle fuel and emission model based on USEPA MOVES. arXiv preprint, arXiv:2008.04986. doi:10.48550/arXiv.20085.04986.
[51] Saha, A., Chandra, S., & Ghosh, I. (2019). Modeling Platoon Dispersion at Signalized Intersections in Mixed Traffic Scenario. Arabian Journal for Science and Engineering, 44(5), 4829–4838. doi:10.1007/s13369-018-3568-5.
[52] Husch, D., & Albeck, J. (2003). Trafficware Intersection Capacity Utilization. Trafficware Corporation, Albany, United States.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
