A Theoretical Pore Network Model for the Soil–Water Characteristic Curve and Hysteresis in Unsaturated Soils
Abstract
Â
Doi: 10.28991/CEJ-2025-011-02-021
Full Text: PDF
Keywords
References
Fredlund, D. G. (1995). The scope of unsaturated soil problems. Proceedings of the First International Conference on Unsaturated Soils, UNSAT'95, 6-8 September, Paris, France.
Rahardjo, H., Kim, Y., & Satyanaga, A. (2019). Role of unsaturated soil mechanics in geotechnical engineering. International Journal of Geo-Engineering, 10(1), 1–23. doi:10.1186/s40703-019-0104-8.
Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, 33(3), 379–392. doi:10.1139/t96-060.
Zhu, S., Zhang, L., & Wu, L. (2024). Simulation of hydro-deformation coupling problem in unsaturated porous media using exponential SWCC and hybrid improved iteration method with multigrid and multistep preconditioner. Acta Geotechnica, 19(10), 7011–7029. doi:10.1007/s11440-024-02414-9.
Yang, H., Rahardjo, H., Leong, E. C., & Fredlund, D. G. (2004). Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Canadian Geotechnical Journal, 41(5), 908–920. doi:10.1139/T04-042.
Azizi, A., Jommi, C., & Musso, G. (2017). A water retention model accounting for the hysteresis induced by hydraulic and mechanical wetting-drying cycles. Computers and Geotechnics, 87, 86–98. doi:10.1016/j.compgeo.2017.02.003.
Fu, Y., Xu, L., & Liao, H. (2024). Quantitative experimental study on the apparent contact angle of unsaturated loess and its application in soil–water characteristics curve modeling. Vadose Zone Journal, 23(6), 20376. doi:10.1002/vzj2.20376.
Brooks, R. H. (1965). Hydraulic properties of porous media. PhD Thesis, Colorado State University, Fort Collins, United States.
Brooks, R. H., & Corey, A. T. (1966). Properties of Porous Media Affecting Fluid Flow. Journal of the Irrigation and Drainage Division, 92(2), 61–88. doi:10.1061/jrcea4.0000425.
Lyu, H., Fan, L., Gu, J., Huang, J., Chen, G., Shi, Z., & Zhang, J. (2024). Characterization of pore water distribution in unsaturated soils during drying process with NMR and soil-water characteristic curves. Transportation Geotechnics, 49, 101440. doi:10.1016/j.trgeo.2024.101440.
Liu, H., Rahardjo, H., Satyanaga, A., & Du, H. (2023). Use of osmotic tensiometers in the determination of soil-water characteristic curves. Engineering Geology, 312, 106938. doi:10.1016/j.enggeo.2022.106938.
Yan, G., Bore, T., Bhuyan, H., Schlaeger, S., & Scheuermann, A. (2022). The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments. Sensors, 22(10), 3724. doi:10.3390/s22103724.
Kumar, A., Azizi, A., & Toll, D. G. (2022). Application of Suction Monitoring for Cyclic Triaxial Testing of Compacted Soils. Journal of Geotechnical and Geoenvironmental Engineering, 148(4), 4022009. doi:10.1061/(asce)gt.1943-5606.0002766.
Abeykoon, T., Udukumburage, R. S., Gallage, C., & Uchimura, T. (2017). Comparison of direct and indirect measured soil-water characteristic curves for a silty sand. International Journal of GEOMATE, 13(39), 9–16. doi:10.21660/2017.39.170519.
Fredlund, D. G., & Anqing Xing. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. doi:10.1139/t94-061.
van Genuchten, M. T. (1980). A Closedâ€form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x.
Rossi, C., & Nimmo, J. R. (1994). Modeling of soil water retention from saturation to oven dryness. Water Resources Research, 30(3), 701–708. doi:10.1029/93WR03238.
Assouline, S., Tessier, D., & Bruand, A. (1998). A conceptual model of the soil water retention curve. Water Resources Research, 34(2), 223–231. doi:10.1029/97WR03039.
Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. P. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 40(6), 1104–1122. doi:10.1139/t03-054.
Leong, E. C., & Rahardjo, H. (1997). Review of Soil-Water Characteristic Curve Equations. Journal of Geotechnical and Geoenvironmental Engineering, 123(12), 1106–1117. doi:10.1061/(asce)1090-0241(1997)123:12(1106).
Dexter, A. R., Czyz, E. A., Richard, G., & Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143(3–4), 243–253. doi:10.1016/j.geoderma.2007.11.010.
Omuto, C. T. (2009). Biexponential model for water retention characteristics. Geoderma, 149(3–4), 235–242. doi:10.1016/j.geoderma.2008.12.001.
Khlosi, M., Cornelis, W. M., Douaik, A., van Genuchten, M. T., & Gabriels, D. (2008). Performance Evaluation of Models That Describe the Soil Water Retention Curve between Saturation and Oven Dryness. Vadose Zone Journal, 7(1), 87–96. doi:10.2136/vzj2007.0099.
Cao, Y., Zhang, K., Liu, S., & Wang, Y. (2024). A review of advancements in the theory and characterization of soil macropore structure. PeerJ, 12(11), 18442. doi:10.7717/peerj.18442.
Daneshian, B., Habibagahi, G., & Nikooee, E. (2021). Determination of unsaturated hydraulic conductivity of sandy soils: a new pore network approach. Acta Geotechnica, 16(2), 449–466. doi:10.1007/s11440-020-01088-3.
Sharma, S., Rathor, A. P. S., & Sharma, J. K. (2025). Prediction of soil water characteristic curve of unsaturated soil using machine learning. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(1), 1–17. doi:10.1007/s41939-024-00664-4.
He, X., Cai, G., & Sheng, D. (2025). Indirect models for SWCC parameters: reducing prediction uncertainty with machine learning. Computers and Geotechnics, 177, 106823. doi:10.1016/j.compgeo.2024.106823.
Lee, T. D., & Yang, C. N. (1952). Statistical theory of equations of state and phase transitions. II. Lattice gas and ISING model. Physical Review, 87(3), 410–419. doi:10.1103/PhysRev.87.410.
Hopfield, J. J. (2018). Neural networks and physical systems with emergent collective computational abilities. Feynman and Computation, 7–19. doi:10.1201/9780429500459.
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276. doi:10.1038/35065725.
Goh, S., Choi, M. Y., Lee, K., & Kim, K. M. (2016). How complexity emerges in urban systems: Theory of urban morphology. Physical Review E, 93(5), 523091. doi:10.1103/PhysRevE.93.052309.
Louf, R., Roth, C., & Barthelemy, M. (2014). Scaling in transportation networks. PLoS ONE, 9(7), 102007. doi:10.1371/journal.pone.0102007.
Xu, J., & Louge, M. Y. (2015). Statistical mechanics of unsaturated porous media. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(6), 0624051–06240517. doi:10.1103/PhysRevE.92.062405.
Du, X., Du, C., Radolinski, J., Wang, Q., & Jian, J. (2022). Metropolis-Hastings Markov Chain Monte Carlo Approach to Simulate van Genuchten Model Parameters for Soil Water Retention Curve. Water (Switzerland), 14(12), 1968. doi:10.3390/w14121968.
Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, Oxford, United Kingdom.
Staple, W. J. (1962). Hysteresis Effects in Soil Moisture Movement. Canadian Journal of Soil Science, 42(2), 247–253. doi:10.4141/cjss62-033.
Šimůnek, J., Kodešová, R., Gribb, M. M., & Van Genuchten, M. T. (1999). Estimating hysteresis in the soil water retention function from cone permeameter experiments. Water Resources Research, 35(5), 1329–1345. doi:10.1029/1998WR900110.
Fatt, I., & Dykstra, H. (1951). Relative Permeability Studies. Journal of Petroleum Technology, 3(09), 249–256. doi:10.2118/951249-g.
Mualem, Y. (1973). Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resources Research, 9(5), 1324–1331. doi:10.1029/WR009i005p01324.
Mualem, Y. (1974). A conceptual model of hysteresis. Water Resources Research, 10(3), 514–520. doi:10.1029/WR010i003p00514.
Mualem, Y. (1984). A modified dependent-domain theory of hysteresis. Soil Science, 137(5), 283–291. doi:10.1097/00010694-198405000-00001.
Mualem, Y., & Dagan, G. (1975). A dependent domain model of capillary hysteresis. Water Resources Research, 11(3), 452–460. doi:10.1029/WR011i003p00452.
Klute, A., & Heermann, D. F. (1974). Soil water profile development under a periodic boundary condition. Soil Science, 117(5), 265–271. doi:10.1097/00010694-197405000-00005.
Hoa, N. T., Gaudu, R., & Thirriot, C. (1977). Influence of the hysteresis effect on transient flows in saturated-unsaturated porous media. Water Resources Research, 13(6), 992–996. doi:10.1029/WR013i006p00992.
Scott, P. S., Farquhar, G. J., & Kouwen, N. (1983). Hysteretic Effects on Net Infiltration. American Society of Agricultural Engineers, Michigan, United States.
Kool, J. B., & Parker, J. C. (1987). Development and evaluation of closedâ€form expressions for hysteretic soil hydraulic properties. Water Resources Research, 23(1), 105–114. doi:10.1029/WR023i001p00105.
Kool, J. B., & Parker, J. C. (1988). Analysis of the inverse problem for transient unsaturated flow. Water Resources Research, 24(6), 817–830. doi:10.1029/WR024i006p00817.
Pot, V., Peth, S., Monga, O., Vogel, L. E., Genty, A., Garnier, P., Vieublé-Gonod, L., Ogurreck, M., Beckmann, F., & Baveye, P. C. (2015). Three-dimensional distribution of water and air in soil pores: Comparison of two-phase two-relaxation-times lattice-Boltzmann and morphological model outputs with synchrotron X-ray computed tomography data. Advances in Water Resources, 84, 87–102. doi:10.1016/j.advwatres.2015.08.006.
Kaestner, A., Lehmann, E., & Stampanoni, M. (2008). Imaging and image processing in porous media research. Advances in Water Resources, 31(9), 1174–1187. doi:10.1016/j.advwatres.2008.01.022.
Schlüter, S., Sheppard, A., Brown, K., & Wildenschild, D. (2014). Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resources Research, 50(4), 3615–3639. doi:10.1002/2014WR015256.
Chandler, R., Koplik, J., Lerman, K., & Willemsen, J. F. (1982). Capillary displacement and percolation in porous media. Journal of Fluid Mechanics, 119, 249–267. doi:10.1017/S0022112082001335.
Brush, S. G. (1967). History of the Lenz-Ising model. Reviews of Modern Physics, 39(4), 883–893. doi:10.1103/RevModPhys.39.883.
Christensen, K., & Moloney, N. R. (2005). Complexity and Criticality. Imperial College Press Advanced Physics Texts, World Scientific Publishing Company, Singapore. doi:10.1142/p365.
Ng, C. W. W., & Pang, Y. W. (2000). Influence of Stress State on Soil-Water Characteristics and Slope Stability. Journal of Geotechnical and Geoenvironmental Engineering, 126(2), 157–166. doi:10.1061/(asce)1090-0241(2000)126:2(157).
Roy, S., & Rajesh, S. (2018). Influence of Confining Pressure on Water Retention Characteristics of Compacted Soil. Indian Geotechnical Journal, 48(2), 327–341. doi:10.1007/s40098-017-0265-3.
DOI: 10.28991/CEJ-2025-011-02-021
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Angela Viviana Gómez

This work is licensed under a Creative Commons Attribution 4.0 International License.