Influence of Resistance Spot Welding Parameters on Cold-Formed Steel Properties and Failure Modes
Downloads
Lightweight steel structural systems such as built-up beams and trusses are efficient and easy to handle, but the joining technique between thin-walled cold-formed steel elements requires improved solutions. Conventional welding technologies are not suitable for connecting thin sheets due to several inconveniences. The study presents a novel technological approach to connect lightweight steel beams made of corrugated galvanised sheets for webs and back-to-back lipped channel profiles for flanges connected by spot welding, as resistance spot welding (RSW) is widely used in various industrial sectors, such as automotive. This study investigates the influence of RSW parameters on the microstructural properties of spot-welded low-carbon galvanised steel sheets, as well as on their mechanical properties. Two grades of base material were used with thicknesses in the range of 0.8 - 2 mm. RSW joints were manufactured using an automated welding source, and their microstructural characteristics were evaluated by optical and electron microscopy to emphasise the importance of using optimal welding regimes to reduce weld failure. Mechanical properties were evaluated using Vickers microhardness measurements and nanoindentation. Tensile tests were carried out to assess the force-displacement curves and identify the failure mode. The results of the study show that RSW is a promising method for fabricating lightweight steel structural systems when the current, time, and interelectrode forces of RSW are carefully selected.
Downloads
[1] Li, M., Tao, W., Zhang, J., Wang, Y., & Yang, S. (2022). Hybrid resistance-laser spot welding of aluminum to steel dissimilar materials: Microstructure and mechanical properties. Materials and Design, 221, 111022. doi:10.1016/j.matdes.2022.111022.
[2] Ashiri, R., Mostaan, H., & Park, Y. Do. (2018). A Phenomenological Study of Weld Discontinuities and Defects in Resistance Spot Welding of Advanced High Strength TRIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 49(12), 6161–6172. doi:10.1007/s11661-018-4900-0.
[3] Adkine, A. S., & Biradar, S. K. (2024). A review of the effects of resistance spot welding on metallurgical and mechanical characteristics. Welding International, 39(2). doi:10.1080/09507116.2024.2419551.
[4] Rao, S. S., Chhibber, R., Arora, K. S., & Shome, M. (2017). Resistance spot welding of galvannealed high strength interstitial free steel. Journal of Materials Processing Technology, 246, 252–261. doi:10.1016/j.jmatprotec.2017.03.027.
[5] Biradar, A. K., & Dabade, B. M. (2019). Optimization of resistance spot welding process parameters in dissimilar joint of MS and ASS 304 sheets. Materials Today: Proceedings, 26, 1284–1288. doi:10.1016/j.matpr.2020.02.256.
[6] Viňáš, J., Kaseak, L., & Greš, M. (2016). Optimization of resistance spot welding parameters for microalloyed steel sheets. Open Engineering, 6(1), 504–510. doi:10.1515/eng-2016-0069.
[7] Emre, H. E., & Kaçar, R. (2016). Resistance spot weldability of galvanize coated and uncoated TRIP steels. Metals, 6(12), 299. doi:10.3390/met6120299.
[8] Hamidinejad, S. M., Kolahan, F., & Kokabi, A. H. (2012). The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing. Materials and Design, 34, 759–767. doi:10.1016/j.matdes.2011.06.064.
[9] Chao, Y. J. (2003). Ultimate strength and failure mechanism of resistance spot weld subjected to tensile, shear, or combined tensile/shear loads. Journal of Engineering Materials and Technology, 125(2), 125–132. doi:10.1115/1.1555648.
[10] Radakovic, D. J., & Tumuluru, M. (2008). Predicting resistance spot weld failure modes in shear tension tests of advanced high-strength automotive steels. Welding Journal (Miami, Fla), 87(4), 96–105.
[11] Pouranvari, M., Marashi, P., Goodarzi, M., & Abedi, A. (2008). An analytical model predicting failure mode of resistance spot welds. 17th International Conference on Metallurgy and Materials, Ostrava, Czechia.
[12] Miyazaki, Y., & Furusako, S. (2007). Tensile shear strength of laser welded lap joints. Nippon Steel Technical Report, 95, 28-34.
[13] Landolfo, R., Mammana, O., Portioli, F., Di Lorenzo, G., & Guerrieri, M. R. (2008). Laser welded built-up cold-formed steel beams: Experimental investigations. Thin-Walled Structures, 46(7–9), 781–791. doi:10.1016/j.tws.2008.03.009.
[14] Kodama, S., Furusako, S., Miyazaki, Y., Ishida, Y., Saito, M., & Nose, T. (2013). Arc welding technology for automotive steel sheets. Nippon Steel Technical Report, 103(103), 83–90.
[15] Jeffus, L. (2011). Welding: Principles and Applications. (7th Ed.). Cengage Learning, Boston, United States.
[16] Podržaj, P., Polajnar, I., Diaci, J., & Kariž, Z. (2006). Influence of welding current shape on expulsion and weld strength of resistance spot welds. Science and Technology of Welding and Joining, 11(3), 250–254. doi:10.1179/174329306X101391.
[17] Yi, L., Rui, W., Xiaojian, X., & Yang, Z. (2016). Expulsion analysis of resistance spot welding on zinc-coated steel by detection of structure-borne acoustic emission signals. International Journal of Advanced Manufacturing Technology, 84(9–12), 1995–2002. doi:10.1007/s00170-015-7846-z.
[18] Marashi, P., Pouranvari, M., Amirabdollahian, S., Abedi, A., & Goodarzi, M. (2008). Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Materials Science and Engineering: A, 480(1–2), 175–180. doi:10.1016/j.msea.2007.07.007.
[19] Zhang, W. H., Qiu, X. M., Sun, D. Q., & Han, L. J. (2011). Effects of resistance spot welding parameters on microstructures and mechanical properties of dissimilar material joints of galvanised high strength steel and aluminium alloy. Science and Technology of Welding and Joining, 16(2), 153–161. doi:10.1179/1362171810Y.0000000009.
[20] Májlinger, K., Katula, L. T., & Varbai, B. (2023). Global Approach on the Shear and Cross Tension Strength of Resistance Spot Welded Thin Steel Sheets. Periodica Polytechnica Mechanical Engineering, 67(4), 315–339. doi:10.3311/ppme.23184.
[21] Yang, K., Meschut, G., Seitz, G., Biegler, M., & Rethmeier, M. (2023). The Identification of a New Liquid Metal Embrittlement (LME) Type in Resistance Spot Welding of Advanced High−Strength Steels on Reduced Flange Widths. Metals, 13(10), 1754. doi:10.3390/met13101754.
[22] Yang, K., Sowada, M., Olfert, V., Seitz, G., Schreiber, V., Heitmann, M., Hein, D., Biegler, M., Jüttner, S., Rethmeier, M., & Meschut, G. (2024). Influence of liquid metal embrittlement on the failure behavior of dissimilar spot welds with advanced high-strength steel: A component study. Journal of Materials Research and Technology, 33, 8321–8328. doi:10.1016/j.jmrt.2024.11.166.
[23] Sun, Y., Zhou, J., Hu, R., Pan, H., Ding, K., Lei, M., & Gao, Y. (2024). The High-Cycle Tensile–Shear Fatigue Properties and Failure Mechanism of Resistance Spot-Welded Advanced High-Strength Steel with a Zn Coating. Materials, 17(18), 4463. doi:10.3390/ma17184463.
[24] Hagen, C., Klinkenberg, F. J., Ossenbrink, R., & Michailov, V. (2023). Resistance spot welding of dissimilar material joints with a cold-gas-sprayed inlayer. International Journal of Advanced Manufacturing Technology, 127(11–12), 5679–5690. doi:10.1007/s00170-023-11897-x.
[25] Wang, G., Zhou, K., Ren, B., & Yu, W. (2025). Influence of Cu/Ni coating on microstructure and mechanical properties in steel/aluminum single-sided resistance spot welding joint. Journal of Materials Processing Technology, 335, 118675. doi:10.1016/j.jmatprotec.2024.118675.
[26] Yang, K., Wang, Z., Haak, V., Olfert, V., El-Sari, B., Hein, D., Biegler, M., Rethmeier, M., & Meschut, G. (2025). A novel welding schedule for expanding the expulsion-free process window in resistance spot welding of dissimilar joints with ultra-high strength steel. Journal of Manufacturing Processes, 137, 306–319. doi:10.1016/j.jmapro.2025.02.009.
[27] Ullrich, M., Wohner, M., & Jüttner, S. (2024). Quality monitoring for a resistance spot weld process of galvanized dual-phase steel based on the electrode displacement. Welding in the World, 68(7), 1791–1800. doi:10.1007/s40194-024-01720-w.
[28] Asati, B., Bag, S., Shajan, N., Kadarbhai, M. A., Singh, P., Arora, K. S., & Singh, A. P. (2024). Tailoring Electrode Life Expectancy in Pre-pulse Resistance Spot Welding of Coated High-Strength Interstitial Free Steel. Journal of Materials Engineering and Performance. doi:10.1007/s11665-024-09721-y.
[29] Özen, F., Onar, V., Bulca, M., & Aslanlar, S. (2023). Resistance spot weldability of Fe-15.4Mn-2.1Al-1.2C twinning induced plasticity steel. Materialwissenschaft Und Werkstofftechnik, 54(7), 857–870. doi:10.1002/mawe.202200241.
[30] Niemiro-Maźniak, J., & Lacki, P. (2024). Experimental and numerical analysis of joints and thin-walled steel beams fabricated through resistance spot welding and hot-dip galvanizing. Thin-Walled Structures, 202, 112105. doi:10.1016/j.tws.2024.112105.
[31] Fawzy, K., Moustafa, A., & Farouk, M. A. (2024). Innovative reinforcement techniques for optimizing the performance of shallow, wide beams in reinforced concrete structures. Innovative Infrastructure Solutions, 9(10), 395. doi:10.1007/s41062-024-01708-x.
[32] Ungureanu, V., Both, I., Burca, M., Radu, B., Neagu, C., & Dubina, D. (2021). Experimental and numerical investigations on built-up cold-formed steel beams using resistance spot welding. Thin-Walled Structures, 161. doi:10.1016/j.tws.2021.107456.
[33] Muhammad, N., Manurung, Y. H., Hafidzi, M., Abas, S. K., Tham, G., & Rahim, M. R. A. (2012). A Quality Improvement Approach for Resistance Spot Welding using Multi-objective Taguchi Method and Response Surface Methodology. International Journal on Advanced Science, Engineering and Information Technology, 2(3), 215. doi:10.18517/ijaseit.2.3.189.
[34] Bhattacharya, D. (2018). Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Materials Science and Technology (United Kingdom), 34(15), 1809–1829. doi:10.1080/02670836.2018.1461595.
[35] Kianersi, D., Mostafaei, A., & Amadeh, A. A. (2014). Resistance spot welding joints of AISI 316L austenitic stainless-steel sheets: Phase transformations, mechanical properties and microstructure characterizations. Materials and Design, 61, 251–263. doi:10.1016/j.matdes.2014.04.075.
[36] Pawar, S., Singh, A. K., Kaushik, L., Park, K. S., Shim, J. H., & Choi, S. H. (2022). Characterizing local distribution of microstructural features and its correlation with microhardness in resistance spot welded ultra-low-carbon steel: Experimental and finite element characterization. Materials Characterization, 194, 112382. doi:10.1016/j.matchar.2022.112382.
[37] Feujofack Kemda, B. V., Barka, N., Jahazi, M., & Osmani, D. (2020). Optimization of resistance spot welding process applied to A36 mild steel and hot dipped galvanized steel based on hardness and nugget geometry. International Journal of Advanced Manufacturing Technology, 106(5–6), 2477–2491. doi:10.1007/s00170-019-04707-w.
[38] Gharibshahiyan, E., Raouf, A. H., Parvin, N., & Rahimian, M. (2011). The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding. Materials and Design, 32(4), 2042–2048. doi:10.1016/j.matdes.2010.11.056.
[39] Lee, H. T., & Chang, Y. C. (2020). Effect of double pulse resistance spot welding process on 15B22 hot stamped boron steel. Metals, 10(10), 1–17. doi:10.3390/met10101279.
[40] Maki, T. (2012). Morphology and substructure of martensite in steels. Phase Transformations in Steels, 2, 34–58. doi:10.1533/9780857096111.1.34.
[41] Aucott, L., Huang, D., Dong, H. B., Wen, S. W., Marsden, J. A., Rack, A., & Cocks, A. C. F. (2017). Initiation and growth kinetics of solidification cracking during welding of steel. Scientific Reports, 7(1), 40255. doi:10.1038/srep40255.
[42] Zhu, Y., Wang, H. P., Wang, Y., Hao, Y., Carlson, B. E., & Lu, F. (2021). Formation mechanism of liquid metal embrittlement in laser lap welding of zinc-coated GEN3 steels. Materials Science and Engineering: A, 800. doi:10.1016/j.msea.2020.140229.
[43] Lee, H., Jo, M. C., Sohn, S. S., Kim, S. H., Song, T., Kim, S. K., Kim, H. S., Kim, N. J., & Lee, S. (2019). Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized TWinning-Induced Plasticity (TWIP) steel sheets. Materials Characterization, 147, 233–241. doi:10.1016/j.matchar.2018.11.008.
[44] Hong, H. L., Wang, Q., Dong, C., & Liaw, P. K. (2014). Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys. Scientific Reports, 4, 7065. doi:10.1038/srep07065.
[45] Razmpoosh, M. H., Biro, E., Chen, D. L., Goodwin, F., & Zhou, Y. (2018). Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel: The role of stress and grain boundaries. Materials Characterization, 145, 627–633. doi:10.1016/j.matchar.2018.09.018.
[46] Kim, D., Kang, J. H., & Kim, S. J. (2018). Heating rate effect on liquid Zn-assisted embrittlement of high Mn austenitic steel. Surface and Coatings Technology, 347, 157–163. doi:10.1016/j.surfcoat.2018.04.081.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.