Sedimentation Characteristics and Sediment Transport in the Palu River Estuary
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-03
Full Text: PDF
Sucipto, A., Thaha, M. A., Hatta, M. P., & Mahmuddin, F. (2025). Sedimentation Characteristics and Sediment Transport in the Palu River Estuary. Civil Engineering Journal, 11(2), 437–452. https://doi.org/10.28991/CEJ-2025-011-02-03
[1] Rusdin, A., Oshikawa, H., Divanesia, A. M. A., & Hatta, M. P. (2024). Analysis and Prediction of Tidal Measurement Data from Temporary Stations using the Least Squares Method. Civil Engineering Journal (Iran), 10(2), 384–403. doi:10.28991/CEJ-2024-010-02-03.
[2] Arianty, N., Mudin, Y., & Rahman, A. (2017). Wave refraction modeling and analysis of ocean wave characteristics in Palu Bay waters. Gravitasi, 16(2), 23-30. doi:10.22487/gravitasi.v16i2.9474. (In Indonesian).
[3] Matos, T., Martins, M. S., Henriques, R., & Goncalves, L. M. (2024). Design of a sensor to estimate suspended sediment transport in situ using the measurements of water velocity, suspended sediment concentration and depth. Journal of Environmental Management, 365, 121660. doi:10.1016/j.jenvman.2024.121660.
[4] Sembiring, A. E., Mananoma, T., Halim, F., & Wuisan, E. M. (2014). Sedimentation Analysis in Panasen River Estuary. Jurnal Sipil Statik, 2(3), 148-154. (In Indonesian).
[5] Zhang, L., Guan, J., Zhong, D., & Wang, Y. (2023). Effect of sediment particles on the velocity profile of sediment–water mixtures in open-channel flow. International Journal of Sediment Research, 38(3), 361-373. doi:10.1016/j.ijsrc.2022.11.005.
[6] Li, Z., Chen, S., Sun, B., Wang, F., Zhang, L., & Wang, B. (2024). The characteristics of water and sediment movement in the confluence area of pipeline. Urban Water Journal, 21(8), 927-940. doi:10.1080/1573062X.2024.2397787.
[7] Hatta, M. P., Widyastuti, I., & Makkarumpa, A. M. M. (2023). The Effect of Triangle Slope Variation on Froude Number with Numerical Simulation. Civil Engineering Journal (Iran), 9(12), 3136–3146. doi:10.28991/CEJ-2023-09-12-012.
[8] Damseth, S., Thakur, K., Kumar, R., Kumar, S., Mahajan, D., Kumari, H., ... & Sharma, A. K. (2024). Assessing the impacts of riverbed mining on aquatic ecosystems: A critical review of effects on water quality and biodiversity. HydroResearch, 7, 122-30. doi:10.1016/j.hydres.2024.01.004.
[9] Karamma, R., Pallu, M. S., Thaha, M. A., & Hatta, M. P. (2020). A 2nd numerical model of salinity distribution pattern on the estuary of Jeneberang River. IALT, 22(March), 192–200.
[10] Garres-Díaz, J., Fernández-Nieto, E. D., & Narbona-Reina, G. (2022). A semi-implicit approach for sediment transport models with gravitational effects. Applied Mathematics and Computation, 421, 126938. doi:10.1016/j.amc.2022.126938.
[11] Setiawan, I., Haditiar, Y., Syukri, M., Ismail, N., & Rizal, S. (2023). Suspended sediment transport generated by non-hydrostatic hydrodynamics in Northern Waters of Aceh, Indonesia. Heliyon, 9(6), e17367. doi:10.1016/j.heliyon.2023.e17367.
[12] Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861. doi:10.1016/j.watres.2008.03.018.
[13] Herman, R., Tanga, A., Tunas, I. G., Ishak, M. G., & Madman, A. (2022). Characteristics of Sediment Transport after Morphological Changes at Palu Estuary, Sulawesi, Indonesia as the Impact of 2018 Tsunami. International Journal of Integrated Engineering, 14(9), 8–14. doi:10.30880/ijie.2022.14.09.002.
[14] Chen, X., Chen, L., Stone, M. C., & Acharya, K. (2020). Assessing connectivity between the river channel and floodplains during high flows using hydrodynamic modeling and particle tracking analysis. Journal of Hydrology, 583, 124609. doi:10.1016/j.jhydrol.2020.124609.
[15] Azis, R., Maricar, F., Thaha, M. A., & Bakri, B. (2024). The Hybrid System of Fluidization and Sediment Flushing for Maintenance Dredging Technique. Civil Engineering Journal (Iran), 10(7), 2275–2292. doi:10.28991/CEJ-2024-010-07-013.
[16] Luan, G., Wang, T., Hou, J., Li, D., Pan, X., Zhang, R., & Han, Z. (2024). A high-resolution water quality model coupled sediment and suspended sediment module. International Journal of Sediment Research, 39(4), 670–682. doi:10.1016/j.ijsrc.2024.05.004.
[17] Escauriaza, C., Paola, C., & Voller, V. R. (2017). Computational models of flow, sediment transport and morphodynamics in rivers. Gravel"Bed Rivers: Processes and Disasters, 1-31. doi:10.1002/9781118971437.ch1.
[18] Selim, T., Hesham, M., & Elkiki, M. (2022). Effect of sediment transport on flow characteristics in non-prismatic compound channels. Ain Shams Engineering Journal, 13(6), 101771. doi:10.1016/j.asej.2022.101771.
[19] Ji, U., Julien, P. Y., Park, S., & Kim, B. (2008). Numerical modeling for sedimentation characteristics of the lower Nakong River and sediment dredging effects at the Nakdong River estuary barrage. KSCE Journal of Civil and Environmental Engineering Research, 28(4B), 405-411.
[20] Badan Standarisasi Nasional. (2009). National, Statistics Agency, and SNI Instant Soup. Badan Standarisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[21] Supian, S., Hiwari, H., Ibrahim, T. M., & Subiyanto. (2020). Hydrodynamic model simulation of Cikidang river estuary, pangandaran based on two season in Indonesia. International Journal of Advanced Science and Technology, 29(5), 220–229.
[22] Karamma, R., Pallu, M. S., Thaha, M. A., Hatta, M. P., Mustari, A. S., & Syarif Sukri, A. (2020). Analysis of Longshore Sediment Transport at Theestuaries of Jeneberang River and Tallo River Caused by Waves on Coast of Makassar. IOP Conference Series: Materials Science and Engineering, 797(1), 012010. doi:10.1088/1757-899X/797/1/012010.
[23] Meyer-Peter, E. (1948). Formulas for bed-load transport. International Association for Hydro-Environment Engineering and Research (IAHR), Madrid, Spain.
[24] Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows (No. 1026). US Department of Agriculture, Washington, United States.
[25] Frijlink, H. C. (1953). Discussion of the Kalinske, Einstein and Meyer-Peter and Muller (Zürich) sediment discharge formulae, taking into account recent transport measurements in Dutch rivers. Journées de l'hydraulique, 2(1), 98-103. (In French).
[26] DHI Water & Environment. (2011). MIKE FLOOD, Modeling of River Flooding”Step by Step Training Guide; DHI Water & Environment, Hí¸rsholm, Denmark.
[27] Naufalina, N. E., Marwoto, J., & Rochaddi, B. (2022). Analysis of Sediment Distribution Based on Grain Size in Baron Coastal Waters, Gunungkidul Regency, Yogyakarta. Indonesian Journal of Oceanography, 4(2), 61–67. doi:10.14710/ijoce.v4i2.13934.
[28] Nur, A., Suriamihardja, D. A., Thaha, M. A., & Hatta, M. P. (2021). Hydrodynamic Analysis at the Confluence of the Mahakam River and the Karang Mumus Tributary. Design Engineering, 5186-5202.
[29] Kranenborg, J. W. M., Campmans, G. H. P., van der Werf, J. J., McCall, R. T., Reniers, A. J. H. M., & Hulscher, S. J. M. H. (2024). Effects of free surface modelling and wave-breaking turbulence on depth-resolved modelling of sediment transport in the swash zone. Coastal Engineering, 191, 104519. doi:10.1016/j.coastaleng.2024.104519.
[2] Arianty, N., Mudin, Y., & Rahman, A. (2017). Wave refraction modeling and analysis of ocean wave characteristics in Palu Bay waters. Gravitasi, 16(2), 23-30. doi:10.22487/gravitasi.v16i2.9474. (In Indonesian).
[3] Matos, T., Martins, M. S., Henriques, R., & Goncalves, L. M. (2024). Design of a sensor to estimate suspended sediment transport in situ using the measurements of water velocity, suspended sediment concentration and depth. Journal of Environmental Management, 365, 121660. doi:10.1016/j.jenvman.2024.121660.
[4] Sembiring, A. E., Mananoma, T., Halim, F., & Wuisan, E. M. (2014). Sedimentation Analysis in Panasen River Estuary. Jurnal Sipil Statik, 2(3), 148-154. (In Indonesian).
[5] Zhang, L., Guan, J., Zhong, D., & Wang, Y. (2023). Effect of sediment particles on the velocity profile of sediment–water mixtures in open-channel flow. International Journal of Sediment Research, 38(3), 361-373. doi:10.1016/j.ijsrc.2022.11.005.
[6] Li, Z., Chen, S., Sun, B., Wang, F., Zhang, L., & Wang, B. (2024). The characteristics of water and sediment movement in the confluence area of pipeline. Urban Water Journal, 21(8), 927-940. doi:10.1080/1573062X.2024.2397787.
[7] Hatta, M. P., Widyastuti, I., & Makkarumpa, A. M. M. (2023). The Effect of Triangle Slope Variation on Froude Number with Numerical Simulation. Civil Engineering Journal (Iran), 9(12), 3136–3146. doi:10.28991/CEJ-2023-09-12-012.
[8] Damseth, S., Thakur, K., Kumar, R., Kumar, S., Mahajan, D., Kumari, H., ... & Sharma, A. K. (2024). Assessing the impacts of riverbed mining on aquatic ecosystems: A critical review of effects on water quality and biodiversity. HydroResearch, 7, 122-30. doi:10.1016/j.hydres.2024.01.004.
[9] Karamma, R., Pallu, M. S., Thaha, M. A., & Hatta, M. P. (2020). A 2nd numerical model of salinity distribution pattern on the estuary of Jeneberang River. IALT, 22(March), 192–200.
[10] Garres-Díaz, J., Fernández-Nieto, E. D., & Narbona-Reina, G. (2022). A semi-implicit approach for sediment transport models with gravitational effects. Applied Mathematics and Computation, 421, 126938. doi:10.1016/j.amc.2022.126938.
[11] Setiawan, I., Haditiar, Y., Syukri, M., Ismail, N., & Rizal, S. (2023). Suspended sediment transport generated by non-hydrostatic hydrodynamics in Northern Waters of Aceh, Indonesia. Heliyon, 9(6), e17367. doi:10.1016/j.heliyon.2023.e17367.
[12] Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861. doi:10.1016/j.watres.2008.03.018.
[13] Herman, R., Tanga, A., Tunas, I. G., Ishak, M. G., & Madman, A. (2022). Characteristics of Sediment Transport after Morphological Changes at Palu Estuary, Sulawesi, Indonesia as the Impact of 2018 Tsunami. International Journal of Integrated Engineering, 14(9), 8–14. doi:10.30880/ijie.2022.14.09.002.
[14] Chen, X., Chen, L., Stone, M. C., & Acharya, K. (2020). Assessing connectivity between the river channel and floodplains during high flows using hydrodynamic modeling and particle tracking analysis. Journal of Hydrology, 583, 124609. doi:10.1016/j.jhydrol.2020.124609.
[15] Azis, R., Maricar, F., Thaha, M. A., & Bakri, B. (2024). The Hybrid System of Fluidization and Sediment Flushing for Maintenance Dredging Technique. Civil Engineering Journal (Iran), 10(7), 2275–2292. doi:10.28991/CEJ-2024-010-07-013.
[16] Luan, G., Wang, T., Hou, J., Li, D., Pan, X., Zhang, R., & Han, Z. (2024). A high-resolution water quality model coupled sediment and suspended sediment module. International Journal of Sediment Research, 39(4), 670–682. doi:10.1016/j.ijsrc.2024.05.004.
[17] Escauriaza, C., Paola, C., & Voller, V. R. (2017). Computational models of flow, sediment transport and morphodynamics in rivers. Gravel"Bed Rivers: Processes and Disasters, 1-31. doi:10.1002/9781118971437.ch1.
[18] Selim, T., Hesham, M., & Elkiki, M. (2022). Effect of sediment transport on flow characteristics in non-prismatic compound channels. Ain Shams Engineering Journal, 13(6), 101771. doi:10.1016/j.asej.2022.101771.
[19] Ji, U., Julien, P. Y., Park, S., & Kim, B. (2008). Numerical modeling for sedimentation characteristics of the lower Nakong River and sediment dredging effects at the Nakdong River estuary barrage. KSCE Journal of Civil and Environmental Engineering Research, 28(4B), 405-411.
[20] Badan Standarisasi Nasional. (2009). National, Statistics Agency, and SNI Instant Soup. Badan Standarisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[21] Supian, S., Hiwari, H., Ibrahim, T. M., & Subiyanto. (2020). Hydrodynamic model simulation of Cikidang river estuary, pangandaran based on two season in Indonesia. International Journal of Advanced Science and Technology, 29(5), 220–229.
[22] Karamma, R., Pallu, M. S., Thaha, M. A., Hatta, M. P., Mustari, A. S., & Syarif Sukri, A. (2020). Analysis of Longshore Sediment Transport at Theestuaries of Jeneberang River and Tallo River Caused by Waves on Coast of Makassar. IOP Conference Series: Materials Science and Engineering, 797(1), 012010. doi:10.1088/1757-899X/797/1/012010.
[23] Meyer-Peter, E. (1948). Formulas for bed-load transport. International Association for Hydro-Environment Engineering and Research (IAHR), Madrid, Spain.
[24] Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows (No. 1026). US Department of Agriculture, Washington, United States.
[25] Frijlink, H. C. (1953). Discussion of the Kalinske, Einstein and Meyer-Peter and Muller (Zürich) sediment discharge formulae, taking into account recent transport measurements in Dutch rivers. Journées de l'hydraulique, 2(1), 98-103. (In French).
[26] DHI Water & Environment. (2011). MIKE FLOOD, Modeling of River Flooding”Step by Step Training Guide; DHI Water & Environment, Hí¸rsholm, Denmark.
[27] Naufalina, N. E., Marwoto, J., & Rochaddi, B. (2022). Analysis of Sediment Distribution Based on Grain Size in Baron Coastal Waters, Gunungkidul Regency, Yogyakarta. Indonesian Journal of Oceanography, 4(2), 61–67. doi:10.14710/ijoce.v4i2.13934.
[28] Nur, A., Suriamihardja, D. A., Thaha, M. A., & Hatta, M. P. (2021). Hydrodynamic Analysis at the Confluence of the Mahakam River and the Karang Mumus Tributary. Design Engineering, 5186-5202.
[29] Kranenborg, J. W. M., Campmans, G. H. P., van der Werf, J. J., McCall, R. T., Reniers, A. J. H. M., & Hulscher, S. J. M. H. (2024). Effects of free surface modelling and wave-breaking turbulence on depth-resolved modelling of sediment transport in the swash zone. Coastal Engineering, 191, 104519. doi:10.1016/j.coastaleng.2024.104519.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
