Seismic Performance Assessment of Sustainable Shelter Building Using Microtremor Method

Rusnardi Rahmat Putra, Junji Kiyono, Yusuke Ono, Dezy Saputra

Abstract


The increasing intensity of earthquakes in West Sumatra could trigger megathrust earthquakes and tsunamis at the inter-plate in the Mentawai Islands. Building assessments are necessary to determine their vulnerability to predicted earthquakes. The target is a four-story building that serves as an education building and vertical evacuation. This research proposes a complete vulnerability assessment method using single microtremor observations, and the results are used to determine seismic building performance. The natural frequency is derived from the spectral analysis of the horizontal components (NS and EW) for each level, and we considered the largest earthquake peak ground motion (PGA) in this region to be the September 30, 2009, Padang earthquake (PGA 380 gals as ground motion input). We calculated the resonance index, seismic vulnerability index, and damping ratio. The results show that the resonance index of the structure is less than 1, the vulnerability index of the UNP Faculty of Economics building ɤ > (1/100-1/200) and is 1/234 to 1/699 for the x direction and 1/207 to 1/709 for the y direction; the average damping ratio is <5% for both directions (x, y) and RDM and FSR relationship is 0.78 and 0.69 for x and y respectively. The overall findings indicate that the structural response of the evaluated buildings falls within the 'slight' damage category during seismic events.

 

Doi: 10.28991/CEJ-2024-010-11-06

Full Text: PDF


Keywords


Vulnerability Assessment; Seismic Wave; Microtremor Single; Vulnerability Index; Building Resonance.

References


Hady, A. K., & Marliyani, Dr., G. I. (2021). Updated Segmentation Model and Cummulative Offset Measurement of the Aceh Segment of the Sumatran Fault System in West Sumatra, Indonesia. Journal of Applied Geology, 5(2), 84. doi:10.22146/jag.56134.

Natawidjaja, D. H. (2018). Major Bifurcations, Slip Rates, and A Creeping Segment of Sumatran Fault Zone in Tarutung-Sarulla-Sipirok-Padangsidempuan, Central Sumatra, Indonesia. Indonesian Journal on Geoscience, 5(2), 137–160. doi:10.17014/IJOG.5.2.137-160.

Putra, R. R., Kiyono, J., Ono, Y., & Parajuli, H. R. (2012). Seismic Hazard Analysis for Indonesia. Journal of Natural Disaster Science, 33(2), 59–70. doi:10.2328/jnds.33.59.

Putra, R. R., Kiyono, J., & Furukawa, A. (2014). Vulnerability assessment of non-engineered houses based on damage data of the 2009 padang earthquake in Padang city, Indonesia. International Journal of GEOMATE, 7(2), 1076–1083. doi:10.21660/2014.14.140714.

Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1). doi:10.1038/s41598-020-72142-z.

Harig, S., Immerz, A., Weniza, Griffin, J., Weber, B., Babeyko, A., Rakowsky, N., Hartanto, D., Nurokhim, A., Handayani, T., & Weber, R. (2020). The Tsunami Scenario Database of the Indonesia Tsunami Early Warning System (InaTEWS): Evolution of the Coverage and the Involved Modeling Approaches. Pure and Applied Geophysics, 177(3), 1379–1401. doi:10.1007/s00024-019-02305-1.

Hamzah, L., Puspito, N. T., & Imamura, F. (2000). Tsunami Catalog and Zones in Indonesia. Journal of Natural Disaster Science, 22(1), 25–43. doi:10.2328/jnds.22.25.

Echebba, E. M., Boubel, H., El Omari, A., Rougui, M., Chourak, M., & Chehade, F. H. (2021). Analysis of the Second Order Effect of the SSI on the Building during a Seismic Load. Infrastructures, 6(2), 20. doi:10.3390/infrastructures6020020.

Brune, S., Babeyko, A. Y., Gaedicke, C., & Ladage, S. (2010). Hazard assessment of underwater landslide-generated tsunamis: A case study in the Padang region, Indonesia. Natural Hazards, 53(2), 205–218. doi:10.1007/s11069-009-9424-x.

Aránguiz, R., Esteban, M., Takagi, H., Mikami, T., Takabatake, T., Gómez, M., González, J., Shibayama, T., Okuwaki, R., Yagi, Y., Shimizu, K., Achiari, H., Stolle, J., Robertson, I., Ohira, K., Nakamura, R., Nishida, Y., Krautwald, C., Goseberg, N., & Nistor, I. (2020). The 2018 Sulawesi tsunami in Palu city as a result of several landslides and coseismic tsunamis. Coastal Engineering Journal, 62(4), 445–459. doi:10.1080/21664250.2020.1780719.

Lange, D., Tilmann, F., Henstock, T., Rietbrock, A., Natawidjaja, D., & Kopp, H. (2018). Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network. Solid Earth, 9(4), 1035–1049. doi:10.5194/se-9-1035-2018.

Aydan, O. (2008). Seismic and tsunami hazard potentials in Indonesia with a special emphasis on Sumatra Island. Journal of the School of Marine Science and Technology-Tokai University (Japan), 6(3), 19-38.

Thein, P. S., Pramumijoyo, S., Brotopuspito, K. S., Wilopo, W., Kiyono, J., Setianto, A., & Putra, R. R. (2015). Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia. AIP Conference Proceedings, 1657, 040007. doi:10.1063/1.4915040.

Gosar, A. (2010). Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors. Natural Hazards and Earth System Sciences, 10(4), 761–772. doi:10.5194/nhess-10-761-2010.

Mercado, V., Díaz-Parra, F. J., Pajaro, C. A., Montejo, J., Posada, G., Arcila, M., & Arteta, C. A. (2024). Performance evaluation of parameters as estimators of seismic site effects in northern South America. Soil Dynamics and Earthquake Engineering, 180. doi:10.1016/j.soildyn.2024.108584.

Aydogdu, H. H., & Ilki, A. (2024). Case study for a performance based rapid seismic assessment methodology (PERA2019) based on actual earthquake damages. Bulletin of Earthquake Engineering, 22(4), 1965–1999. doi:10.1007/s10518-023-01841-5.

Karsli, F., & Bayrak, E. (2024). Single-station microtremor surveys for site characterization: A case study in Erzurum city, eastern Turkey. Earthquake Engineering and Engineering Vibration, 23(3), 563–576. doi:10.1007/s11803-024-2257-5.

Lantada, N., Pujades, L. G., & Barbat, A. H. (2009). Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Natural Hazards, 51, 501-524. doi:10.1007/s11069-007-9212-4.

Akkaya, İ. (2020). Availability of seismic vulnerability index (K g) in the assessment of building damage in Van, Eastern Turkey. Earthquake Engineering and Engineering Vibration, 19(1), 189–204. doi:10.1007/s11803-020-0556-z.

Cole, H. A. (1973). On-Line Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures. NASSA CR 2205, Elsen Engineering and Research, Inc., Mountain View, United States.

Herak, M. (2011). Overview of recent ambient noise measurements in croatia in free-field and in buildings. Geofizika, 28(1), 21–40.

Farsi, M. N., Chatelain, J. L., Guillier, B., & Bouchelouh, A. (2010). Evaluation of the quality of repairing and strengthening of buildings. Proceedings of the 14th ECEE, 30 August- 3 September, 2010, Ohrid, Republic of Macedonia.

Nakamura, Y., Gurler, E. D., Saita, J., Rovelli, A., & Donati, S. (2000). Vulnerability investigation of Roman Colosseum using microtremor. 12th World Conference on Earthquake Engineering, 30 January- 4 February, 2000, Auckland, New Zealand.

Sato, T., Nakamura, Y., & Saita, J. (2008). The change of the dynamic characteristics using microtremor. The 14th World Conference on Earthquake Engineering, 12-17 October, 2008, Beijing, China.

Putra, R. R., Ono, Y., Syah, N., & Cantika, A. A. (2021). Seismic performance evaluation of existing building in earthquake prone area based on seismic index and seismic demand method. Civil Engineering and Architecture, 9(4), 1237–1245. doi:10.13189/cea.2021.090425.

Mucciarelli, M., Herak, M., & Cassidy, J. (2008). Increasing seismic safety by combining engineering technologies and seismological data. Proceedings of the NATO Advanced Research Workshop on Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, 19-21 September, 2007, Dubrovnik, Croatia.

Crisci, G., Gentile, R., Ceroni, F., Galasso, C., & Lignola, G. P. (2024). Seismic vulnerability assessment of RC deck-stiffened arch bridges. Engineering Structures, 317, 118595. doi:10.1016/j.engstruct.2024.118595.

Mache, A., Kulkarni, A., Shah, S., Gujar, A., & Hujare, P. (2024). Exploring Natural Frequency and Damping in Coir-Rubber Polymer Composites for Vibration Control in Mobility Vehicles. SAE Technical Papers. doi:10.4271/2024-01-2357.

Hakimi, B., Masoumi, Z., Ghods, A., & Etemad-Saeed, N. (2019). Microtremor HVSR study of site effects in Zanjan city (Iran). Iranian Journal of Geophysics, 12(4), 115–139.

Petersen, M. D., Shumway, A. M., Powers, P. M., Mueller, C. S., Moschetti, M. P., Frankel, A. D., Rezaeian, S., McNamara, D. E., Luco, N., Boyd, O. S., Rukstales, K. S., Jaiswal, K. S., Thompson, E. M., Hoover, S. M., Clayton, B. S., Field, E. H., & Zeng, Y. (2021). The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed. Earthquake Spectra, 37(2), 959–987. doi:10.1177/8755293020988016.

Zhang, Z., & Cho, C. (2009). Experimental study on damping ratios of in-situ buildings. International Journal of Engineering and Applied Sciences, 5(4), 264-268.

Dunand, F., Bard, P. Y., Chatelain, J. L., Guéguen, P., Vassail, T., & Farsi M. N. (2002) Damping and frequency from RANDOMDEC method applied to in situ measurements of ambient vibrations. Evidence for effective soil structure interaction. The 12th European Conference on Earthquake Engineering, 9-13 September 2002, London, United Kingdom.

ICC. (2024). International Code (IBC2024). International Code Council (ICC), Washington, United States.

El-Betar, S. A. (2017). Seismic performance of existing R.C. framed buildings. HBRC Journal, 13(2), 171–180. doi:10.1016/j.hbrcj.2015.06.001.

The Japan Building Disaster Prevention Association. (2001). Seismic Evaluation and Retrofit. The Japan Building Disaster Prevention Association, Tokyo, Japan.

Hadianfard, M. A., Rabiee, R., & Sarshad, A. (2017). Assessment of Vulnerability and Dynamic Characteristics of a Historical Building Using Microtremor Measurements. International Journal of Civil Engineering, 15(2), 175–183. doi:10.1007/s40999-016-0086-2.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-11-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Rusnardi Rahmat Putra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message