A Study of Biomass Concrete Reinforced with Fiber Composites to Enhance Impact Load Capacity
Abstract
Â
Doi: 10.28991/CEJ-2025-011-02-020
Full Text: PDF
Keywords
References
Neville, A.M. (2011) Properties of Concrete. Pearson Education Limited, London, United Kingdom.
Smitha, M. P., Suji, D., Shanthi, M., & Adesina, A. (2022). Application of bacterial biomass in biocementation process to enhance the mechanical and durability properties of concrete. Cleaner Materials, 3, 100050. doi:10.1016/j.clema.2022.100050.
Benjamin, B., Zachariah, S., Sudhakumar, J., & Suchithra, T. V. (2024). Harnessing construction biotechnology for sustainable upcycled cement composites: A meta-analytical review. Journal of Building Engineering, 86. doi:10.1016/j.jobe.2024.108973.
Zhou, Z., Wei, Y., Wang, G., Wang, J., Lin, Y., & Zhu, B. (2024). Experimental study on the basic properties of new biomass bamboo aggregate concrete. Journal of Building Engineering, 86, 108892. doi:10.1016/j.jobe.2024.108892.
Trabucchi, I., Tiberti, G., Conforti, A., Medeghini, F., & Plizzari, G. A. (2021). Experimental study on Steel Fiber Reinforced Concrete and Reinforced Concrete elements under concentrated loads. Construction and Building Materials, 307, 124834. doi:10.1016/j.conbuildmat.2021.124834.
Yoo, D. Y., & Banthia, N. (2019). Impact resistance of fiber-reinforced concrete – A review. Cement and Concrete Composites, 104, 103389. doi:10.1016/j.cemconcomp.2019.103389.
Wang, J., Fu, R., & Dong, H. (2023). Carbon nanofibers and PVA fiber hybrid concrete: Abrasion and impact resistance. Journal of Building Engineering, 80, 107894. doi:10.1016/j.jobe.2023.107894.
Murali, G., Katman, H. Y. B., Wong, L. S., Ibrahim, M. R., Ramkumar, V. R., & Abid, S. R. (2023). Effect of recycled lime sludge, calcined clay and silica fume blended binder-based fibrous concrete with superior impact strength and fracture toughness. Construction and Building Materials, 409, 133880. doi:10.1016/j.conbuildmat.2023.133880.
Ji, Y., Gao, Z., Chen, W., Huang, H., Li, M., & Li, X. (2024). Study on the deformation mode and energy absorption characteristics of a corner-enhanced biomimetic spider web hierarchical structure. Thin-Walled Structures, 199, 111810. doi:10.1016/j.tws.2024.111810.
Han, Z., Ma, Z., Tong, S., Shen, G., Sun, Y., Li, J., Zhao, H., & Ren, L. (2024). Simultaneous enhancements of energy absorption and strength driven by hexagonal close-packed lattice structures of resin revealed by in-situ compression. Thin-Walled Structures, 197, 111586. doi:10.1016/j.tws.2024.111586.
Gharehbaghi, H., & Farrokhabadi, A. (2024). Experimental, analytical, and numerical studies of the energy absorption capacity of bi-material lattice structures based on quadrilateral bipyramid unit cell. Composite Structures, 337, 118042. doi:10.1016/j.compstruct.2024.118042.
Liu, H., Li, Q., & Ni, S. (2022). Assessment of the engineering properties of biomass recycled aggregate concrete developed from coconut shells. Construction and Building Materials, 342, 128015. doi:10.1016/j.conbuildmat.2022.128015.
Xiao, J.-Zh., Li, J.-B., & Zhang, Ch. (2006). On relationships between the mechanical properties of recycled aggregate concrete: An overview. Materials and Structures, 39(6), 655–664. doi:10.1617/s11527-006-9093-0.
Radonjanin, V., Malešev, M., Marinković, S., & Al Malty, A. E. S. (2013). Green recycled aggregate concrete. Construction and Building Materials, 47, 1503–1511. doi:10.1016/j.conbuildmat.2013.06.076.
Andreu, G., & Miren, E. (2014). Experimental analysis of properties of high performance recycled aggregate concrete. Construction and Building Materials, 52, 227–235. doi:10.1016/j.conbuildmat.2013.11.054.
Tam, V. W. Y., Butera, A., Le, K. N., & Li, W. (2020). Utilising CO2 technologies for recycled aggregate concrete: A critical review. Construction and Building Materials, 250, 118903. doi:10.1016/j.conbuildmat.2020.118903.
Venkatanarayanan, H. K., & Rangaraju, P. R. (2013). Material Characterization Studies on Low- and High-Carbon Rice Husk Ash and Their Performance in Portland Cement Mixtures. Advances in Civil Engineering Materials, 2(1), 266–287. doi:10.1520/acem20120056.
Beltrán, M. G., Agrela, F., Barbudo, A., Ayuso, J., & RamÃrez, A. (2014). Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Construction and Building Materials, 72, 231–238. doi:10.1016/j.conbuildmat.2014.09.019.
Lim, J. S., Abdul Manan, Z., Wan Alwi, S. R., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16(5), 3084–3094. doi:10.1016/j.rser.2012.02.051.
Feng, Q. G., Lin, Q. Y., Yu, Q. J., Zhao, S. Y., Yang, L. F., & Sugita, S. (2004). Concrete with highly active rice husk ash. Journal Wuhan University of Technology, Materials Science Edition, 19(3), 74–77. doi:10.1007/bf02835067.
Padhi, R. S., Patra, R. K., Mukharjee, B. B., & Dey, T. (2018). Influence of incorporation of rice husk ash and coarse recycled concrete aggregates on properties of concrete. Construction and Building Materials, 173, 289–297. doi:10.1016/j.conbuildmat.2018.03.270.
Prasara-A, J., & Gheewala, S. H. (2017). Sustainable utilization of rice husk ash from power plants: A review. Journal of Cleaner Production, 167, 1020–1028. doi:10.1016/j.jclepro.2016.11.042.
Huang, H., Gao, X., Wang, H., & Ye, H. (2017). Influence of rice husk ash on strength and permeability of ultra-high performance concrete. Construction and Building Materials, 149, 621–628. doi:10.1016/j.conbuildmat.2017.05.155.
Arabani, M., & Tahami, S. A. (2017). Assessment of mechanical properties of rice husk ash modified asphalt mixture. Construction and Building Materials, 149, 350–358. doi:10.1016/j.conbuildmat.2017.05.127.
Le, H. T., & Ludwig, H. M. (2020). Alkali silica reactivity of rice husk ash in cement paste. Construction and Building Materials, 243, 118145. doi:10.1016/j.conbuildmat.2020.118145.
Camargo-Pérez, N. R., Abellán-GarcÃa, J., & Fuentes, L. (2023). Use of rice husk ash as a supplementary cementitious material in concrete mix for road pavements. Journal of Materials Research and Technology, 25, 6167–6182. doi:10.1016/j.jmrt.2023.07.033.
Chalee, W., Sasakul, T., Suwanmaneechot, P., & Jaturapitakkul, C. (2013). Utilization of rice husk-bark ash to improve the corrosion resistance of concrete under 5-year exposure in a marine environment. Cement and Concrete Composites, 37(1), 47–53. doi:10.1016/j.cemconcomp.2012.12.007.
Zain, M. F. M., Islam, M. N., Mahmud, F., & Jamil, M. (2011). Production of rice husk ash for use in concrete as a supplementary cementitious material. Construction and Building Materials, 25(2), 798–805. doi:10.1016/j.conbuildmat.2010.07.003.
Makul, N., & Sua-iam, G. (2018). Effect of granular urea on the properties of self-consolidating concrete incorporating untreated rice husk ash: Flowability, compressive strength and temperature rise. Construction and Building Materials, 162, 489–502. doi:10.1016/j.conbuildmat.2017.12.023.
Hwang, C. L., & Huynh, T. P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101, 1–9. doi:10.1016/j.conbuildmat.2015.10.025.
Nuaklong, P., Janprasit, K., & Jongvivatsakul, P. (2021). Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash. Journal of Building Engineering, 40, 102762. doi:10.1016/j.jobe.2021.102762.
Patil, G. M., & Prakash, S. S. (2024). Effect of macro-synthetic and hybrid fibres on the behaviour of square concrete columns reinforced with GFRP rebars under eccentric compression. Structures, 59, 105707. doi:10.1016/j.istruc.2023.105707.
Nematzadeh, M., & Fallah-Valukolaee, S. (2021). Experimental and analytical investigation on structural behavior of two-layer fiber-reinforced concrete beams reinforced with steel and GFRP rebars. Construction and Building Materials, 273, 121933. doi:10.1016/j.conbuildmat.2020.121933.
Yoo, D. Y., Kwon, K. Y., Park, J. J., & Yoon, Y. S. (2015). Local bond-slip response of GFRP rebar in ultra-high-performance fiber-reinforced concrete. Composite Structures, 120, 53–64. doi:10.1016/j.compstruct.2014.09.055.
Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. doi:10.1016/j.engstruct.2015.12.003.
Sijavandi, K., Sharbatdar, M. K., & Kheyroddin, A. (2021). Experimental evaluation of flexural behavior of High-Performance Fiber Reinforced Concrete Beams using GFRP and High Strength Steel Bars. Structures, 33, 4256–4268. doi:10.1016/j.istruc.2021.07.020.
Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. doi:10.1016/j.cemconres.2006.01.010.
Celik, K., Meral, C., Mancio, M., Mehta, P. K., & Monteiro, P. J. M. (2014). A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials, 67, 14–19. doi:10.1016/j.conbuildmat.2013.11.065.
Celik, K., Jackson, M. D., Mancio, M., Meral, C., Emwas, A. H., Mehta, P. K., & Monteiro, P. J. M. (2014). High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete. Cement and Concrete Composites, 45, 136–147. doi:10.1016/j.cemconcomp.2013.09.003.
Kotynia, R., Szczech, D., & Kaszubska, M. (2017). Bond Behavior of GRFP Bars to Concrete in Beam Test. Procedia Engineering, 193, 401–408. doi:10.1016/j.proeng.2017.06.230.
Meraz, M. M., Sobuz, Md. H. R., Mim, N. J., Ali, A., Islam, Md. S., Safayet, Md. A., & Mehedi, Md. T. (2023). Using rice husk ash to imitate the properties of silica fume in high-performance fiber-reinforced concrete (HPFRC): A comprehensive durability and life-cycle evaluation. Journal of Building Engineering, 76, 107219. doi:10.1016/j.jobe.2023.107219.
Jittin, V., & Bahurudeen, A. (2022). Evaluation of rheological and durability characteristics of sugarcane bagasse ash and rice husk ash based binary and ternary cementitious system. Construction and Building Materials, 317, 125965. doi:10.1016/j.conbuildmat.2021.125965.
Pachla, E. C., Silva, D. B., Stein, K. J., Marangon, E., & Chong, W. (2021). Sustainable application of rice husk and rice straw in cellular concrete composites. Construction and Building Materials, 283, 122770. doi:10.1016/j.conbuildmat.2021.122770.
Zhu, H., Zhai, M., Liang, G., Li, H., Wu, Q., Zhang, C., & Hua, S. (2021). Experimental study on the freezing resistance and microstructure of alkali-activated slag in the presence of rice husk ash. Journal of Building Engineering, 38, 102173. doi:10.1016/j.jobe.2021.102173.
El-Sayed, T. A., & Algash, Y. A. (2021). Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars. Case Studies in Construction Materials, 15, e00604. doi:10.1016/j.cscm.2021.e00604.
Carrillo, J., Calixto-Vargas, J., & Burgos, E. A. (2024). Shear behavior of concrete panels reinforced with GFRP bars under cyclic diagonal tension tests. Engineering Structures, 302, 117340. doi:10.1016/j.engstruct.2023.117340.
Vinod Kumar, M., Siddaramaiah, Y. M., & Jebamalai Raj, S. (2022). Shear behaviour of GFRP retrofitted spiral transverse reinforced concrete beams with partially replaced recycled aggregates. Materials Today: Proceedings, 65, 1642–1650. doi:10.1016/j.matpr.2022.04.700.
Ali, H., Assih, J., & Li, A. (2021). Flexural capacity of continuous reinforced concrete beams strengthened or repaired by CFRP/GFRP sheets. International Journal of Adhesion and Adhesives, 104, 102759. doi:10.1016/j.ijadhadh.2020.102759.
Prasad, R., & Pandey, M. (2012). Rice Husk Ash as a Renewable Source for the Production of Value Added Silica Gel and its Application: An Overview. Bulletin of Chemical Reaction Engineering & Catalysis, 7(1), 1–25. doi:10.9767/bcrec.7.1.1216.1-25.
Real, C., Alcala, M. D., & Criado, J. M. (1996). ChemInform Abstract: Preparation of Silica from Rice Husks. ChemInform, 27(49). doi:10.1002/chin.199649266.
Liou, T. H., & Yang, C. C. (2011). Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Materials Science and Engineering: B, 176(7), 521–529. doi:10.1016/j.mseb.2011.01.007.
ASTM C192/C192M-19.(2024). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-19.
Gerges, N. N., Issa, C. A., & Fawaz, S. (2015). Effect of construction joints on the splitting tensile strength of concrete. Case Studies in Construction Materials, 3, 83–91. doi:10.1016/j.cscm.2015.07.001.
ACI Committee 318. (2019). ACI 318-19: Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute, Michigan, United States.
Chou, J. S., Liu, C. Y., Prayogo, H., Khasani, R. R., Gho, D., & Lalitan, G. G. (2022). Predicting nominal shear capacity of reinforced concrete wall in building by metaheuristics-optimized machine learning. Journal of Building Engineering, 61, 10504. doi:10.1016/j.jobe.2022.105046.
Bixapathi, G., & Saravanan, M. (2022). Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Materials Today: Proceedings, 52, 1606–1610. doi:10.1016/j.matpr.2021.11.267.
Nasir Amin, M., Ur Rehman, K., Shahzada, K., Khan, K., Wahab, N., & Abdulalim Alabdullah, A. (2022). Mechanical and microstructure performance and global warming potential of blended concrete containing rice husk ash and silica fume. Construction and Building Materials, 346, 128470. doi:10.1016/j.conbuildmat.2022.128470.
DÃaz, A. G., Bueno, S., Villarejo, L. P., & Eliche-Quesada, D. (2024). Improved strength of alkali activated materials based on construction and demolition waste with addition of rice husk ash. Construction and Building Materials, 413, 134823. doi:10.1016/j.conbuildmat.2023.134823.
Onyenokporo, N. C., Taki, A., Montalvo, L. Z., & Oyinlola, M. (2023). Thermal performance characterization of cement-based masonry blocks incorporating rice husk ash. Construction and Building Materials, 398, 132481. doi:10.1016/j.conbuildmat.2023.132481.
Rahimi, M. Z., Zhao, R., Sadozai, S., Zhu, F., Ji, N., & Xu, L. (2023). Research on the influence of curing strategies on the compressive strength and hardening behaviour of concrete prepared with Ordinary Portland Cement. Case Studies in Construction Materials, 18, 2045. doi:10.1016/j.cscm.2023.e02045.
Al-Amoudi, O. S. B., Maslehuddin, M., Ibrahim, M., Shameem, M., & Al-Mehthel, M. H. (2011). Performance of blended cement concretes prepared with constant workability. Cement and Concrete Composites, 33(1), 90–102. doi:10.1016/j.cemconcomp.2010.10.004.
Liu, S., Zhou, Y., Zhou, J., Zhang, B., Jin, F., Zheng, Q., & Fan, H. (2019). Blast responses of concrete beams reinforced with GFRP bars: Experimental research and equivalent static analysis. Composite Structures, 226, 111271. doi:10.1016/j.compstruct.2019.111271.
Doostmohamadi, A., Shakiba, M., Bazli, M., Ebrahimzadeh, M., & Arashpour, M. (2023). Enhancement of bond characteristics between sand-coated GFRP bar and normal weight and light-weight concrete using an innovative anchor. Engineering Structures, 294, 116780. doi:10.1016/j.engstruct.2023.116780.
Manoj, T., Mrudhul varma, B., & Seshagiri rao, M. V. (2023). Performance evaluation of conventional and lightweight concrete using GFRP sheets at elevated temperature. Materials Today: Proceedings, 1-7. doi:10.1016/j.matpr.2023.05.115.
Doostmohamadi, A., Karamloo, M., & Afzali-Naniz, O. (2020). Effect of polyolefin macro fibers and handmade GFRP anchorage system on improving the bonding behavior of GFRP bars embedded in self-compacting lightweight concrete. Construction and Building Materials, 253, 119230. doi:10.1016/j.conbuildmat.2020.119230.
Yang, X., Liu, Y., Wang, Y. F., & Zhang, J. (2024). Performance of steel tube reinforced concrete-filled weathering steel tubular members under lateral impact loading. Journal of Constructional Steel Research, 213, 108382. doi:10.1016/j.jcsr.2023.108382.
Zheng, Y., Su, Z., Li, J., Wang, Z., Xu, Y., Li, X., & Che, P. (2024). Energy transfer efficiency and rock damage characteristics of a hydraulic impact hammer with different tool shapes. International Journal of Impact Engineering, 188, 104933. doi:10.1016/j.ijimpeng.2024.104933.
Cai, X., Zhang, X., Lu, Y., Noori, A., Han, S., & Chen, L. (2024). A novel braided bamboo composite material with balanced strength and good energy absorption capacity inspired by bamboo. Construction and Building Materials, 421, 135652. doi:10.1016/j.conbuildmat.2024.135652.
Mou, B., Liu, X., Zhao, O., & Xiao, H. (2023). Dynamic response of concrete-filled square steel tubular columns under lateral impact load at flat or corner zone. Engineering Structures, 292, 116319. doi:10.1016/j.engstruct.2023.116319.
Mostofinejad, D., Aghamohammadi, O., Bahmani, H., & Ebrahimi, S. (2023). Improving thermal characteristics and energy absorption of concrete by recycled rubber and silica fume. Developments in the Built Environment, 16, 100221. doi:10.1016/j.dibe.2023.100221.
Alam, A., & Hu, J. (2023). Mechanical properties and energy absorption capacity of plain and fiber-reinforced single- and multi-layer cellular concrete. Construction and Building Materials, 394, 132154. doi:10.1016/j.conbuildmat.2023.132154.
Kumar, V., Iqbal, M. A., & Mittal, A. K. (2018). Study of induced prestress on deformation and energy absorption characteristics of concrete slabs under drop impact loading. Construction and Building Materials, 188, 656–675. doi:10.1016/j.conbuildmat.2018.08.113.
DOI: 10.28991/CEJ-2025-011-02-020
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Piyorus Tasenhog, Kunanon Sakkampang

This work is licensed under a Creative Commons Attribution 4.0 International License.