An Investigation of Dynamic Soil-Structure Interaction on the Seismic Behavior of RC Base-Isolated Buildings
Downloads
Doi: 10.28991/CEJ-2024-010-11-01
Full Text: PDF
Downloads
[2] Ziraoui, A., Kissi, B., Aaya, H., & Azdine, I. (2024). Seismic behavior of base-isolated building structures with lead rubber bearings (LRBs). Procedia Structural Integrity, 61, 171–179. doi:10.1016/j.prostr.2024.06.023.
[3] Usta, P. (2021). Investigation of a base-isolator system's effects on the seismic behavior of a historical structure. Buildings, 11(5), 217. doi:10.3390/buildings11050217.
[4] Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Pearson, London, United Kingdom.
[5] Alavi, E., & Alidoost, M. (2012). Soil-structure interaction effects on seismic behavior of base-isolated buildings. 15th World Conference on Earthquake Engineering (WCEE 2012), 24-28 September 2012, Lisbon, Portugal.
[6] Hatami, F., Nademi, H., & Rahaie, M. (2015). Effects of Soil-Structure Interaction on the Seismic Response of Base Isolated in High-Rise Buildings. International Journal of Structural and Civil Engineering Research, 4(3), 237-242. doi:10.18178/ijscer.4.3.237-242.
[7] Du, D. S., Wang, S. G., Liu, W. Q., Shi, S., Lee, C. P., & Xu, J. (2018). Modal property of base-isolated high-rise structure considering soil–structure interaction effect. Advances in Mechanical Engineering, 10(12), 1687814018803808. doi:10.1177/1687814018803808.
[8] Yanik, A., & Ulus, Y. (2023). Soil–Structure Interaction Consideration for Base Isolated Structures under Earthquake Excitation. Buildings, 13(4). doi:10.3390/buildings13040915.
[9] Forcellini, D. (2018). Seismic assessment of a benchmark based isolated ordinary building with soil structure interaction. Bulletin of Earthquake Engineering, 16(5), 2021–2042. doi:10.1007/s10518-017-0268-6.
[10] Cruz, C., & Miranda, E. (2017). Evaluation of soil-structure interaction effects on the damping ratios of buildings subjected to earthquakes. Soil Dynamics and Earthquake Engineering, 100, 183–195. doi:10.1016/j.soildyn.2017.05.034.
[11] Chopra, A. K. (2014). Dynamics of structures theory and applications to earthquake engineering (4th Ed.). Prentice Hall, Hoboken, United States.
[12] Clough, R. W., & Penzien, J. (2003). Dynamic of Structures. McGraw-Hill, New York, United States.
[13] Lamb, H. (1904). I. On the propagation of tremors over the surface of an elastic solid. Philosophical Transactions of the Royal Society of London. Series A, Containing papers of a mathematical or physical character, 203(359-371), 13. doi:10.1098/rsta.1904.0013.
[14] Poulos, H. G., & Davis, E. H. (1974). Elastic solutions for soil and rock mechanics. John Wiley & Sons, Hoboken, United States.
[15] Hadjian, A. H., Luco, J. E., & Tsai, N. C. (1974). Soil-structure interaction: Continuum or finite element? Nuclear Engineering and Design, 31(2), 151–167. doi:10.1016/0029-5493(75)90138-7.
[16] Wolf, J. P., & Deeks, A. J. (2004). Cones to model foundation vibrations: Incompressible soil and axi-symmetric embedment of arbitrary shape. Soil Dynamics and Earthquake Engineering, 24(12), 963–978. doi:10.1016/j.soildyn.2004.06.016.
[17] Wolf, J. P., & Deeks, A. J. (2004). Foundation vibration analysis: A strength of materials approach. Elsevier, Butterworth-Heinemann, Oxford, United Kingdom.
[18] Wolf, J. P. (1994). Foundation vibration analysis using simple physical models. Pearson Education, London, United Kingdom.
[19] Bapir, B., Abrahamczyk, L., Wichtmann, T., & Prada-Sarmiento, L. F. (2023). Soil-structure interaction: A state-of-the-art review of modeling techniques and studies on seismic response of building structures. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1120351.
[20] Pradhan, P. K., Baidya, D. K., & Ghosh, D. P. (2004). Dynamic response of foundations resting on layered soil by cone model. Soil Dynamics and Earthquake Engineering, 24(6), 425–434. doi:10.1016/j.soildyn.2004.03.001.
[21] Gazetas, G. C., & Roesset, J. M. (1979). Vertical Vibration of Machine Foundations. Journal of the Geotechnical Engineering Division, 105(12), 1435–1454. doi:10.1061/ajgeb6.0000899.
[22] Meek, J. W., & Wolf, J. P. (1993). Why cone models can represent the elastic half-space. Earthquake Engineering & Structural Dynamics, 22(9), 759-771. doi:10.1002/eqe.4290220903.
[23] Bararnia, M., Hassani, N., Ganjavi, B., & Ghodrati Amiri, G. (2018). Estimation of inelastic displacement ratios for soil-structure systems with embedded foundation considering kinematic and inertial interaction effects. Engineering Structures, 159, 252–264. doi:10.1016/j.engstruct.2018.01.002.
[24] Hassani, N., Bararnia, M., & Ghodrati Amiri, G. (2018). Effect of soil-structure interaction on inelastic displacement ratios of degrading structures. Soil Dynamics and Earthquake Engineering, 104, 75–87. doi:10.1016/j.soildyn.2017.10.004.
[25] Lu, Y., Hajirasouliha, I., & Marshall, A. M. (2018). An improved replacement oscillator approach for soil-structure interaction analysis considering soft soils. Engineering Structures, 167, 26–38. doi:10.1016/j.engstruct.2018.04.005.
[26] Ganjavi, B., Gholamrezatabar, A., & Hajirasouliha, I. (2019). Effects of soil-structure interaction and lateral design load pattern on performance-based plastic design of steel moment resisting frames. Structural Design of Tall and Special Buildings, 28(11), e1624. doi:10.1002/tal.1624.
[27] Saito, T. (2024). Structural Earthquake Response Analysis 3D, (STERA 3D Version 11.5). Earthquake Disaster Engineering Research Laboratory, Toyohashi University of Technology, Toyohashi, Japan. Available online: https://rc.ace.tut.ac.jp/saito/software-e.html#p01 (accessed on October 2024).
[28] Ishiyama, Y. (2011). Introduction to Earthquake Engineering and Seismic Codes in the World. Lecture Note, Hokkaido University, Hokkaido, Japan.
[29] The Japan Society of Seismic Isolation (JSSI). (2024). Seismic isolation structures worldwide. The Japan Society of Seismic Isolation (JSSI), Tokyo, Japan.
[30] Pietra, D., Pampanin, S., Mayes, R. L., Wetzel, N. G., & Feng, D. (2015). Design of base-isolated buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 48(2), 118–135. doi:10.5459/bnzsee.48.2.118-135.
[31] Wair, B. R., DeJong, J. T., & Shantz, T. (2012). Guidelines for estimation of shear wave velocity profiles. Pacific Earthquake Engineering Research Center, Berkeley, United States.
[32] JIS G 31122020. (2020). steel bars for concrete reinforcement. Japanese Standards Association (JIS), Tokyo, Japan.
[33] Bridgestone Corporation. (2024). Seismic isolation bearings for buildings. Bridgestone Corporation, Tokyo, Japan. Available online: https://www.bridgestone.com/products/diversified/antiseismic_rubber/ (accessed on October 2024).
[34] Oiles Corporation. (2024). Seismic isolator and vibration control devices. Oiles Corporation, Fujisawa, Japan. Available online: https://www.oiles.co.jp/en/products/damping_isolation/ (accessed on October 2024).
[35] Kawakin Corporation. (2024). Seismic isolation oil damper KYM. Kawakin Corporation, Kawaguchi, Japan. Available online: https://kawakinct.co.jp/en/product/#building (accessed on October 2024).
[36] AIJ. (2011). Simple calculation method for dynamic interaction between building and ground. Architectural Institute of Japan, Tokyo, Japan. (In Japanese).
[37] Shibata, A. (2010). Dynamic analysis of earthquake resistant structures. Tohoku University. Sendai, Japan.
[38] Saito, T. (2024). STERA WAVE technical manual version 1.0. Earthquake Disaster Engineering Research Laboratory, Toyohashi University of Technology, Toyohashi, Japan. Available online: https://rc.ace.tut.ac.jp/saito/software-e.html#p03 (accessed on October 2024).
[39] Takeda, T., Sozen, M. A., & Nielsen, N. N. (1970). Reinforced Concrete Response to Simulated Earthquakes. Journal of the Structural Division, 96(12), 2557–2573. doi:10.1061/jsdeag.0002765.
[40] Papanicolaou, G. C., & Zaoutsos, S. P. (2019). Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites. Creep and Fatigue in Polymer Matrix Composites, 3–59, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-102601-4.00001-1.
[41] Jennings, P. C., & Bielak, J. (1973). Dynamics of building-soil interaction. Bulletin of the Seismological Society of America, 63(1), 9–48. doi:10.1785/bssa0630010009.
[42] Zhuang, H., Fu, J., Yu, X., Chen, S., & Cai, X. (2019). Earthquake responses of a base-isolated structure on a multi-layered soft soil foundation by using shaking table tests. Engineering Structures, 179, 79–91. doi:10.1016/j.engstruct.2018.10.060.
[43] Ismail, S. A., Kaddah, F. K., & Raphael, W. E. (2020). Effect of Number of Stories on the Seismic Soil Structure Interaction Performance of Midrise Frame Structures. IOP Conference Series: Materials Science and Engineering, 809(1), 012011. doi:10.1088/1757-899X/809/1/012011.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.