Machine Learning and the GR2M Model for Monthly Runoff Forecasting
Abstract
Doi: 10.28991/CEJ-2025-011-01-022
Full Text: PDF
Keywords
References
Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., & Mathevet, T. (2007). Impact of limited streamflow data on the efficiency and the parameters of rainfall—runoff models. Hydrological Sciences Journal, 52(1), 131–151. doi:10.1623/hysj.52.1.131.
Song, S., Ye, Z., Zhou, Z., Chuai, X., Zhou, R., Zou, J., & Chen, Y. (2024). Impacts of climate change and land cover factor on runoff in the Coastal Chinese Mainland region. Geography and Sustainability, 5(4), 526–537. doi:10.1016/j.geosus.2024.04.003.
Alshammari, E., Abdul Rahman, A., Rainis, R., Abu Seri, N., & Ahmad, F. (2024). Investigation of Runoff and Flooding in Urban Areas based on Hydrological Models: A Literature Review. International Journal of Geoinformatics, 20(1), 3033. doi:10.52939/ijg.v20i1.3033.
Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2016). Impacts of land use–land cover change and urbanization on flooding: A case study of Oshiwara River Basin in Mumbai, India. CATENA, 145, 142–154. doi:10.1016/j.catena.2016.06.009.
Mekonnen, Y. A., & Manderso, T. M. (2023). Land use/land cover change impact on streamflow using Arc-SWAT model, in case of Fetam watershed, Abbay Basin, Ethiopia. Applied Water Science, 13(5), 111. doi:10.1007/s13201-023-01914-5.
Chaves, M. T. R., Farias, T. R. L., & Eloi, W. M. (2024). Comparative analysis of bioretention design strategies for urban runoff infiltration: a critical overview. Ecological Engineering, 207, 107352. doi:10.1016/j.ecoleng.2024.107352.
Chen, H.-E., Chiu, Y.-Y., Tsai, T.-L., & Yang, J.-C. (2020). Effect of Rainfall, Runoff and Infiltration Processes on the Stability of Footslopes. Water, 12(5), 1229. doi:10.3390/w12051229.
Love, D., Uhlenbrook, S., Corzo-Perez, G., Twomlow, S., & van der Zaag, P. (2010). Rainfall–interception–evaporation–runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe. Hydrological Sciences Journal, 55(5), 687–703. doi:10.1080/02626667.2010.494010.
Wang, D., & Alimohammadi, N. (2012). Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resources Research, 48(5), W05546. doi:10.1029/2011wr011444.
Wang, Y., Xu, H.-M., Li, Y.-H., Liu, L.-L., Hu, Z.-H., Xiao, C., & Yang, T.-T. (2022). Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model. Water, 14(22), 3614. doi:10.3390/w14223614.
Waheed, A., Jamal, M. H., Javed, M. F., & Idlan Muhammad, K. (2024). A CMIP6 multi-model based analysis of potential climate change effects on watershed runoff using SWAT model: A case study of Kunhar river basin, Pakistan. Heliyon, 10(8), e28951. doi:10.1016/j.heliyon.2024.e28951.
Lan, H., Zhao, Z., Li, L., Li, J., Fu, B., Tian, N., Lai, R., Zhou, S., Zhu, Y., Zhang, F., Peng, J., & Clague, J. J. (2024). Climate change drives flooding risk increases in the Yellow River Basin. Geography and Sustainability, 5(2), 193–199. doi:10.1016/j.geosus.2024.01.004.
Zhang, H., Wang, B., Liu, D. L., Zhang, M., Leslie, L. M., & Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585, 124822. doi:10.1016/j.jhydrol.2020.124822.
Janicka, E., Kanclerz, J., Agaj, T., & Gizińska, K. (2023). Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River. Sustainability, 15(10), 7959. doi:10.3390/su15107959.
Souley Tangam, I., Yonaba, R., Niang, D., Adamou, M. M., Keïta, A., & Karambiri, H. (2024). Daily Simulation of the Rainfall–Runoff Relationship in the Sirba River Basin in West Africa: Insights from the HEC-HMS Model. Hydrology, 11(3), 34. doi:10.3390/hydrology11030034.
Busico, G., Colombani, N., Fronzi, D., Pellegrini, M., Tazioli, A., & Mastrocicco, M. (2020). Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. Journal of Environmental Management, 266, 110625. doi:10.1016/j.jenvman.2020.110625.
Tasdighi, A., Arabi, M., & Harmel, D. (2018). A probabilistic appraisal of rainfall-runoff modeling approaches within SWAT in mixed land use watersheds. Journal of Hydrology, 564, 476–489. doi:10.1016/j.jhydrol.2018.07.035.
Ghosh, A., Roy, M. B., & Roy, P. K. (2022). Evaluating the performance of MIKE NAM model on rainfall–runoff in lower Gangetic floodplain, West Bengal, India. Modeling Earth Systems and Environment, 8(3), 4001–4017. doi:10.1007/s40808-021-01347-6.
Nannawo, A. S., Lohani, T. K., Eshete, A. A., & Ayana, M. T. (2022). Evaluating the dynamics of hydroclimate and streamflow for data-scarce areas using MIKE11-NAM model in Bilate river basin, Ethiopia. Modeling Earth Systems and Environment, 8(4), 4563–4578. doi:10.1007/s40808-022-01455-x.
Fathi, M. M., Awadallah, A. G., & Aldahshoory, W. (2023). An Improved Monthly Water Balance GR2M Model with a Seasonally Variable Parameter. Journal of Hydrology, 617, 129127. doi:10.1016/j.jhydrol.2023.129127.
Mendez, M., Calvo-Valverde, L.-A., Imbach, P., Maathuis, B., Hein-Grigg, D., Hidalgo-Madriz, J.-A., & Alvarado-Gamboa, L.-F. (2022). Hydrological Response of Tropical Catchments to Climate Change as Modeled by the GR2M Model: A Case Study in Costa Rica. Sustainability, 14(24), 16938. doi:10.3390/su142416938.
Sadio, C. A. A. S., Faye, C., Pande, C. B., Tolche, A. D., Ali, M. S., Cabral-Pinto, M. M. S., & Elsahabi, M. (2023). Hydrological response of tropical rivers basins to climate change using the GR2M model: the case of the Casamance and Kayanga-Géva rivers basins. Environmental Sciences Europe, 35(1), 113. doi:10.1186/s12302-023-00822-4.
Chekole, A. G., Belete, M. A., Fikadie, F. T., & Wubneh, M. A. (2024). Evaluate the performance of HEC-HMS and SWAT models in simulating the streamflow in the Gumara watershed, Ethiopia. Sustainable Water Resources Management, 10(1), 26. doi:10.1007/s40899-023-00997-x.
Fanta, S. S., & Sime, C. H. (2021). Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed, Ethiopia. Sustainable Water Resources Management, 8(1), 1-16. doi:10.1007/s40899-021-00596-8.
Kate Flores Zuñiga, S., Junior Santos de la Cruz, E., & Santos Hurtado, S. (2022). Comparative analysis of GR2M, Temez and HEC-HMS Hydrological Models for runoff estimation in a high Andean basin. 2022 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1–6. doi:10.1109/coniiti57704.2022.9953651.
Gichamo, T., Nourani, V., Gökçekuş, H., & Gelete, G. (2023). Ensemble rainfall–runoff modeling of physically based semi-distributed models using multi-source rainfall data fusion. Journal of Water and Climate Change, 15(2), 325–347. doi:10.2166/wcc.2023.084.
Mohammadi, B. (2021). A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7(6), 98. doi:10.1007/s40899-021-00584-y.
Singh, A. K., Kumar, P., Ali, R., Al-Ansari, N., Vishwakarma, D. K., Kushwaha, K. S., Panda, K. C., Sagar, A., Mirzania, E., Elbeltagi, A., Kuriqi, A., & Heddam, S. (2022). An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability, 14(13), 8209. doi:10.3390/su14138209.
Ditthakit, P., Pinthong, S., Salaeh, N., Binnui, F., Khwanchum, L., Kuriqi, A., Khedher, K. M., & Pham, Q. B. (2021). Performance Evaluation of a Two-Parameters Monthly Rainfall-Runoff Model in the Southern Basin of Thailand. Water, 13(9), 1226. doi:10.3390/w13091226.
Ditthakit, P., Pinthong, S., Salaeh, N., Binnui, F., Khwanchum, L., & Pham, Q. B. (2021). Using machine learning methods for supporting GR2M model in runoff estimation in an ungauged basin. Scientific Reports, 11(1), 19955. doi:10.1038/s41598-021-99164-5.
Ditthakit, P., Pinthong, S., Salaeh, N., Weekaew, J., Thanh Tran, T., & Bao Pham, Q. (2023). Comparative study of machine learning methods and GR2M model for monthly runoff prediction. Ain Shams Engineering Journal, 14(4), 101941. doi:10.1016/j.asej.2022.101941.
Iamampai, S., Talaluxmana, Y., Kanasut, J., & Rangsiwanichpong, P. (2024). Enhancing rainfall–runoff model accuracy with machine learning models by using soil water index to reflect runoff characteristics. Water Science & Technology, 89(2), 368–381. doi:10.2166/wst.2023.424.
Aedasong, A., Roongtawanreongsri, S., Hajisamae, S., & James, D. (2019). Ecosystem Services of a Wetland in the Politically Unstable Southernmost Provinces of Thailand. Tropical Conservation Science, 12. doi:10.1177/1940082919871827.
Benharoon, S. Y. (2013). Building a Culture of Peace in Muslim Community in Southern Thailand through Family Communication. Procedia - Social and Behavioral Sciences, 91, 522–531. doi:10.1016/j.sbspro.2013.08.450.
Anuar, A. R., & Harun, A. (2018). Malaysia-Thailand Cross Border Trade and Cross Border Special Economic Zone Potential: A Case Study of Rantau PanjangSungai Kolok Cross Border Town. Journal International Studies, 14. doi:10.32890/jis2018.14.8.
Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106, 234–240. doi:10.1016/j.sbspro.2013.12.027.
Ahmed, A. A. M. (2022). Development of deep learning hybrid models for hydrological predictions. Ph.D. Thesis, University of Southern Queensland, Queensland, Australia.
Patle, G. T., Chettri, M., & Jhajharia, D. (2020). Monthly pan evaporation modelling using multiple linear regression and artificial neural network techniques. Water Supply, 20(3), 800-808. doi:10.2166/ws.2019.189.
Kassem, Y., Gökçekuş, H., Çamur, H., & Esenel, E. (2021). Application of artificial neural network, multiple linear regression, and response surface regression models in the estimation of monthly rainfall in Northern Cyprus. Desalination and Water Treatment, 215, 328-346. doi:10.5004/dwt.2021.26525.
Prins, N. W., Sanchez, J. C., & Prasad, A. (2014). A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces. Frontiers in Neuroscience, 8. doi:10.3389/fnins.2014.00111.
Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer, New York, United States. doi:10.1007/978-1-4757-3264-1.
Kabouya, M. (1990). Rainfall-runoff modeling at monthly and annual time steps in northern Algeria. Ph.D. Thesis, University of Paris South Orsay, Orsay, France.
Makhlouf, Z., & Michel, C. (1994). A two-parameter monthly water balance model for French watersheds. Journal of Hydrology, 162(3–4), 299–318. doi:10.1016/0022-1694(94)90233-x.
Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V. (2006). Stepwise development of a two-parameter monthly water balance model. Journal of Hydrology, 318(1–4), 200–214. doi:10.1016/j.jhydrol.2005.06.014.
DOI: 10.28991/CEJ-2025-011-01-022
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Chayanat Buathongkhue, Natapon Kaewthong

This work is licensed under a Creative Commons Attribution 4.0 International License.