Machine Learning and the GR2M Model for Monthly Runoff Forecasting

Natapon Kaewthong, Torlap Kanplumjit, Naras Kwanthong, Kritsana Sureeya, Chayanat Buathongkhue

Abstract


This article presents the results of an analysis of monthly rainfall into monthly runoff using Machine Learning algorithms, including Multiple Linear Regression, Multilayer Perceptron, and Support Vector Machine, which were compared with the GR2M hydrologic model to identify the most suitable approach for rainfall-runoff analysis in watersheds in the lower southern region of Thailand. This region is characterized by its unique geographic location at the border between Thailand and Malaysia. It faces challenges due to uncertainty in rainfall data, measured only on the Thai side, leading to a lack of corresponding data from Malaysia. The analysis found that the Machine Learning Support Vector Machine algorithm consistently provided the most accurate results across all sub-basins. Sub-basin TU02 achieved an MAE of 2.63 mm/month, while sub-basin X.119A had an MAE of 68.10 mm/month, sub-basin X.184 had an MAE of 145.05 mm/month, and sub-basin X.274 had an MAE of 66.08 mm/month. This research demonstrated the utility of advanced algorithms in rainfall-runoff analysis for areas with partial or incomplete data coverage. The findings confirm that the Machine Learning Support Vector Machine algorithm outperformed the Hydrologic Model (GR2M) in terms of accuracy and reliability. Therefore, this study concludes that applying the Machine Learning Support Vector Machine algorithm is an optimal approach for runoff prediction in the southern region of Thailand and provides a framework for potential applications in other areas with similar data and geographic challenges.

 

Doi: 10.28991/CEJ-2025-011-01-022

Full Text: PDF


Keywords


Hydrologic Model; Runoff Forecasting; Machine Learning; GR2M; Thailand.

References


Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., & Mathevet, T. (2007). Impact of limited streamflow data on the efficiency and the parameters of rainfall—runoff models. Hydrological Sciences Journal, 52(1), 131–151. doi:10.1623/hysj.52.1.131.

Song, S., Ye, Z., Zhou, Z., Chuai, X., Zhou, R., Zou, J., & Chen, Y. (2024). Impacts of climate change and land cover factor on runoff in the Coastal Chinese Mainland region. Geography and Sustainability, 5(4), 526–537. doi:10.1016/j.geosus.2024.04.003.

Alshammari, E., Abdul Rahman, A., Rainis, R., Abu Seri, N., & Ahmad, F. (2024). Investigation of Runoff and Flooding in Urban Areas based on Hydrological Models: A Literature Review. International Journal of Geoinformatics, 20(1), 3033. doi:10.52939/ijg.v20i1.3033.

Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2016). Impacts of land use–land cover change and urbanization on flooding: A case study of Oshiwara River Basin in Mumbai, India. CATENA, 145, 142–154. doi:10.1016/j.catena.2016.06.009.

Mekonnen, Y. A., & Manderso, T. M. (2023). Land use/land cover change impact on streamflow using Arc-SWAT model, in case of Fetam watershed, Abbay Basin, Ethiopia. Applied Water Science, 13(5), 111. doi:10.1007/s13201-023-01914-5.

Chaves, M. T. R., Farias, T. R. L., & Eloi, W. M. (2024). Comparative analysis of bioretention design strategies for urban runoff infiltration: a critical overview. Ecological Engineering, 207, 107352. doi:10.1016/j.ecoleng.2024.107352.

Chen, H.-E., Chiu, Y.-Y., Tsai, T.-L., & Yang, J.-C. (2020). Effect of Rainfall, Runoff and Infiltration Processes on the Stability of Footslopes. Water, 12(5), 1229. doi:10.3390/w12051229.

Love, D., Uhlenbrook, S., Corzo-Perez, G., Twomlow, S., & van der Zaag, P. (2010). Rainfall–interception–evaporation–runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe. Hydrological Sciences Journal, 55(5), 687–703. doi:10.1080/02626667.2010.494010.

Wang, D., & Alimohammadi, N. (2012). Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resources Research, 48(5), W05546. doi:10.1029/2011wr011444.

Wang, Y., Xu, H.-M., Li, Y.-H., Liu, L.-L., Hu, Z.-H., Xiao, C., & Yang, T.-T. (2022). Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model. Water, 14(22), 3614. doi:10.3390/w14223614.

Waheed, A., Jamal, M. H., Javed, M. F., & Idlan Muhammad, K. (2024). A CMIP6 multi-model based analysis of potential climate change effects on watershed runoff using SWAT model: A case study of Kunhar river basin, Pakistan. Heliyon, 10(8), e28951. doi:10.1016/j.heliyon.2024.e28951.

Lan, H., Zhao, Z., Li, L., Li, J., Fu, B., Tian, N., Lai, R., Zhou, S., Zhu, Y., Zhang, F., Peng, J., & Clague, J. J. (2024). Climate change drives flooding risk increases in the Yellow River Basin. Geography and Sustainability, 5(2), 193–199. doi:10.1016/j.geosus.2024.01.004.

Zhang, H., Wang, B., Liu, D. L., Zhang, M., Leslie, L. M., & Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585, 124822. doi:10.1016/j.jhydrol.2020.124822.

Janicka, E., Kanclerz, J., Agaj, T., & Gizińska, K. (2023). Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River. Sustainability, 15(10), 7959. doi:10.3390/su15107959.

Souley Tangam, I., Yonaba, R., Niang, D., Adamou, M. M., Keïta, A., & Karambiri, H. (2024). Daily Simulation of the Rainfall–Runoff Relationship in the Sirba River Basin in West Africa: Insights from the HEC-HMS Model. Hydrology, 11(3), 34. doi:10.3390/hydrology11030034.

Busico, G., Colombani, N., Fronzi, D., Pellegrini, M., Tazioli, A., & Mastrocicco, M. (2020). Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. Journal of Environmental Management, 266, 110625. doi:10.1016/j.jenvman.2020.110625.

Tasdighi, A., Arabi, M., & Harmel, D. (2018). A probabilistic appraisal of rainfall-runoff modeling approaches within SWAT in mixed land use watersheds. Journal of Hydrology, 564, 476–489. doi:10.1016/j.jhydrol.2018.07.035.

Ghosh, A., Roy, M. B., & Roy, P. K. (2022). Evaluating the performance of MIKE NAM model on rainfall–runoff in lower Gangetic floodplain, West Bengal, India. Modeling Earth Systems and Environment, 8(3), 4001–4017. doi:10.1007/s40808-021-01347-6.

Nannawo, A. S., Lohani, T. K., Eshete, A. A., & Ayana, M. T. (2022). Evaluating the dynamics of hydroclimate and streamflow for data-scarce areas using MIKE11-NAM model in Bilate river basin, Ethiopia. Modeling Earth Systems and Environment, 8(4), 4563–4578. doi:10.1007/s40808-022-01455-x.

Fathi, M. M., Awadallah, A. G., & Aldahshoory, W. (2023). An Improved Monthly Water Balance GR2M Model with a Seasonally Variable Parameter. Journal of Hydrology, 617, 129127. doi:10.1016/j.jhydrol.2023.129127.

Mendez, M., Calvo-Valverde, L.-A., Imbach, P., Maathuis, B., Hein-Grigg, D., Hidalgo-Madriz, J.-A., & Alvarado-Gamboa, L.-F. (2022). Hydrological Response of Tropical Catchments to Climate Change as Modeled by the GR2M Model: A Case Study in Costa Rica. Sustainability, 14(24), 16938. doi:10.3390/su142416938.

Sadio, C. A. A. S., Faye, C., Pande, C. B., Tolche, A. D., Ali, M. S., Cabral-Pinto, M. M. S., & Elsahabi, M. (2023). Hydrological response of tropical rivers basins to climate change using the GR2M model: the case of the Casamance and Kayanga-Géva rivers basins. Environmental Sciences Europe, 35(1), 113. doi:10.1186/s12302-023-00822-4.

Chekole, A. G., Belete, M. A., Fikadie, F. T., & Wubneh, M. A. (2024). Evaluate the performance of HEC-HMS and SWAT models in simulating the streamflow in the Gumara watershed, Ethiopia. Sustainable Water Resources Management, 10(1), 26. doi:10.1007/s40899-023-00997-x.

Fanta, S. S., & Sime, C. H. (2021). Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed, Ethiopia. Sustainable Water Resources Management, 8(1), 1-16. doi:10.1007/s40899-021-00596-8.

Kate Flores Zuñiga, S., Junior Santos de la Cruz, E., & Santos Hurtado, S. (2022). Comparative analysis of GR2M, Temez and HEC-HMS Hydrological Models for runoff estimation in a high Andean basin. 2022 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1–6. doi:10.1109/coniiti57704.2022.9953651.

Gichamo, T., Nourani, V., Gökçekuş, H., & Gelete, G. (2023). Ensemble rainfall–runoff modeling of physically based semi-distributed models using multi-source rainfall data fusion. Journal of Water and Climate Change, 15(2), 325–347. doi:10.2166/wcc.2023.084.

Mohammadi, B. (2021). A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7(6), 98. doi:10.1007/s40899-021-00584-y.

Singh, A. K., Kumar, P., Ali, R., Al-Ansari, N., Vishwakarma, D. K., Kushwaha, K. S., Panda, K. C., Sagar, A., Mirzania, E., Elbeltagi, A., Kuriqi, A., & Heddam, S. (2022). An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability, 14(13), 8209. doi:10.3390/su14138209.

Ditthakit, P., Pinthong, S., Salaeh, N., Binnui, F., Khwanchum, L., Kuriqi, A., Khedher, K. M., & Pham, Q. B. (2021). Performance Evaluation of a Two-Parameters Monthly Rainfall-Runoff Model in the Southern Basin of Thailand. Water, 13(9), 1226. doi:10.3390/w13091226.

Ditthakit, P., Pinthong, S., Salaeh, N., Binnui, F., Khwanchum, L., & Pham, Q. B. (2021). Using machine learning methods for supporting GR2M model in runoff estimation in an ungauged basin. Scientific Reports, 11(1), 19955. doi:10.1038/s41598-021-99164-5.

Ditthakit, P., Pinthong, S., Salaeh, N., Weekaew, J., Thanh Tran, T., & Bao Pham, Q. (2023). Comparative study of machine learning methods and GR2M model for monthly runoff prediction. Ain Shams Engineering Journal, 14(4), 101941. doi:10.1016/j.asej.2022.101941.

Iamampai, S., Talaluxmana, Y., Kanasut, J., & Rangsiwanichpong, P. (2024). Enhancing rainfall–runoff model accuracy with machine learning models by using soil water index to reflect runoff characteristics. Water Science & Technology, 89(2), 368–381. doi:10.2166/wst.2023.424.

Aedasong, A., Roongtawanreongsri, S., Hajisamae, S., & James, D. (2019). Ecosystem Services of a Wetland in the Politically Unstable Southernmost Provinces of Thailand. Tropical Conservation Science, 12. doi:10.1177/1940082919871827.

Benharoon, S. Y. (2013). Building a Culture of Peace in Muslim Community in Southern Thailand through Family Communication. Procedia - Social and Behavioral Sciences, 91, 522–531. doi:10.1016/j.sbspro.2013.08.450.

Anuar, A. R., & Harun, A. (2018). Malaysia-Thailand Cross Border Trade and Cross Border Special Economic Zone Potential: A Case Study of Rantau Panjang­Sungai Kolok Cross Border Town. Journal International Studies, 14. doi:10.32890/jis2018.14.8.

Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106, 234–240. doi:10.1016/j.sbspro.2013.12.027.

Ahmed, A. A. M. (2022). Development of deep learning hybrid models for hydrological predictions. Ph.D. Thesis, University of Southern Queensland, Queensland, Australia.

Patle, G. T., Chettri, M., & Jhajharia, D. (2020). Monthly pan evaporation modelling using multiple linear regression and artificial neural network techniques. Water Supply, 20(3), 800-808. doi:10.2166/ws.2019.189.

Kassem, Y., Gökçekuş, H., Çamur, H., & Esenel, E. (2021). Application of artificial neural network, multiple linear regression, and response surface regression models in the estimation of monthly rainfall in Northern Cyprus. Desalination and Water Treatment, 215, 328-346. doi:10.5004/dwt.2021.26525.

Prins, N. W., Sanchez, J. C., & Prasad, A. (2014). A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces. Frontiers in Neuroscience, 8. doi:10.3389/fnins.2014.00111.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer, New York, United States. doi:10.1007/978-1-4757-3264-1.

Kabouya, M. (1990). Rainfall-runoff modeling at monthly and annual time steps in northern Algeria. Ph.D. Thesis, University of Paris South Orsay, Orsay, France.

Makhlouf, Z., & Michel, C. (1994). A two-parameter monthly water balance model for French watersheds. Journal of Hydrology, 162(3–4), 299–318. doi:10.1016/0022-1694(94)90233-x.

Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V. (2006). Stepwise development of a two-parameter monthly water balance model. Journal of Hydrology, 318(1–4), 200–214. doi:10.1016/j.jhydrol.2005.06.014.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-022

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Chayanat Buathongkhue, Natapon Kaewthong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message