Enhancement of Expansive Soil Properties by Water Treatment Sludge Ash in Landfill Liners
Abstract
Â
Doi: 10.28991/CEJ-2024-010-11-04
Full Text: PDF
Keywords
References
Al-Soudany, K., Fattah, M. Y., & Raheel, F. (2024). Clay barriers performance in landfills: A review. Engineering and Technology Journal, 42(11), 1327-1342. doi:10.30684/etj.2024.148162.1724.
Jones, L. D., & Jefferson, I. (2023). Expansive soils. ICE Manual of Geotechnical Engineering, Second Edition, Volume I, 447–478, ICE Publishing, United Kingdom. doi:10.1680/icemge.66816.0447.
Nalbantoǧlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. doi:10.1016/j.conbuildmat.2004.03.011.
Kethavathu, V. N. L. N., & Chigurupati, S. (2022). Utilization of admixture stabilized native expansive soil as a CNS material for heave control. Innovative Infrastructure Solutions, 7(4), 272. doi:10.1007/s41062-022-00873-1.
AL-Soudany, K. (2018). Improvement of Expansive Soil by Using Silica Fume. Kufa Journal of Engineering, 9(1), 222–239. doi:10.30572/2018/kje/090115.
Al-Soudany, K. Y. H. (2021). Improvement of Expansive Soil by Rice Husk Ash. Journal of Engineering Science and Technology, 16(6), 5027–5043.
Hamid, M., Aljanabi, K., & Mustafa, A. (2023). Using water treatment sludge to Improve Geotechnical Engineering Properties of Soils: A Review. Anbar Journal of Engineering Sciences, 14(1), 50–65. doi:10.37649/aengs.2023.138350.1041.
Moavenian, M. H., & Yasrobi, S. S. (2008). Volume change behavior of compacted clay due to organic liquids as permeant. Applied Clay Science, 39(1–2), 60–71. doi:10.1016/j.clay.2007.04.009.
Al-Soudany, K., Al-Gharbawi, A., & Al-Noori, M. (2018). Improvement of clayey soil characteristics by using activated carbon. MATEC Web of Conferences, 162, 1009. doi:10.1051/matecconf/201816201009.
Al-Soudany, K. Y. H., Fattah, M. Y., & Rahil, F. H. (2023). A Comprehensive Review of New Trends in the Use of Geosynthetics Clay Liner GCLs in Landfill. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 124–130.
Ahmad, T., Ahmad, K., & Alam, M. (2016). Characterization of Water Treatment Plant’s Sludge and its Safe Disposal Options. Procedia Environmental Sciences, 35, 950–955. doi:10.1016/j.proenv.2016.07.088.
Al-Soudany, K. Y. H., Al-Adili, A., & Fadhil, A. I. (2024). Soft Clay Improved With Cigarette Butts. Journal of Engineering Science and Technology, 19(4), 1142–1155.
Acikel, A. S., Gates, W. P., Singh, R. M., Bouazza, A., & Rowe, R. K. (2018). Insufficient initial hydration of GCLs from some subgrades: Factors and causes. Geotextiles and Geomembranes, 46(6), 770–781. doi:10.1016/j.geotexmem.2018.06.007.
Al-Soudany, K. Y. H., Fattah, M. Y., & Rahil, F. H. (2024). A review of landfill liner and liner systems. AIP Conference Proceedings, 3105(1), 50013. doi:10.1063/5.0212198.
Bouazza, A., Vangpaisal, T., & Jefferis, S. (2006). Effect of Wet–Dry Cycles and Cation Exchange on Gas Permeability of Geosynthetic Clay Liners. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1011–1018. doi:10.1061/(asce)1090-0241(2006)132:8(1011).
De Camillis, M., Di Emidio, G., Bezuijen, A., Verastegui Flores, D., Van Stappen, J., & Cnudde, V. (2017). Effect of wet-dry cycles on polymer treated bentonite in seawater: swelling ability, hydraulic conductivity and crack analysis. Applied Clay Science, 142, 52–59. doi:10.1016/j.clay.2016.11.011.
Qiu, H., & Yu, J. (2008). Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: Preparation and water absorbency. Journal of Applied Polymer Science, 107(1), 118–123. doi:10.1002/app.26261.
Kaish, A. B. M. A., Breesem, K. M., & Abood, M. M. (2018). Influence of pre-treated alum sludge on properties of high-strength self-compacting concrete. Journal of Cleaner Production, 202, 1085–1096. doi:10.1016/j.jclepro.2018.08.156.
Ihsan, E. A. A., Al-Quraishi, H., & Mahdi, A. H. (2024). Effect of partially cement replacement by water and wastewater sludge ash on mechanical properties of concrete. AIP Conference Proceedings, 3105(1), 50013. doi:10.1063/5.0212193.
Abdalla, A. A., & Salih Mohammed, A. (2022). Theoretical models to evaluate the effect of SiO2 and CaO contents on the long-term compressive strength of cement mortar modified with cement kiln dust (CKD). Archives of Civil and Mechanical Engineering, 22(3), 1–21. doi:10.1007/s43452-022-00418-4.
Polat, R., Demirboğa, R., & Karagöl, F. (2019). Mechanical and physical behavior of cement paste and mortar incorporating nano-CaO. Structural Concrete, 20(1), 361–370. doi:10.1002/suco.201800132.
Qarluq, A. W., Polat, R., & Fatma Karagöl, F. (2020). Effects of Single and Dual Use of Halloysite Nano-Clay, Nano-SiO2 and Nano-CaO on the Properties of Cement Based Mortars. European Journal of Science and Technology, 20, 815–826. doi:10.31590/ejosat.792365.
Horkoss, S., Escadeillas, G., Rizk, T., & Lteif, R. (2016). The effect of the source of cement SO3 on the expansion of mortars. Case Studies in Construction Materials, 4, 62–72. doi:10.1016/j.cscm.2015.12.004.
Owaid, H. M., Hamid, R., & Taha, M. R. (2014). Influence of thermally activated alum sludge ash on the engineering properties of multiple-blended binders concretes. Construction and Building Materials, 61, 216–229. doi:10.1016/j.conbuildmat.2014.03.014.
Nurul Nazierah, M.Y., Kartini, K., Hamidah, M.S., & Nuraini, T. (2016). Compressive Strength and Water Absorption of Sewage Sludge Ash (SSA) Mortar. CIEC 2015, Springer, Singapore. doi:10.1007/978-981-10-0155-0_19.
Tantawy, M. A., El-Roudi, A. M., Abdalla, E. M., & Abdelzaher, M. A. (2012). Evaluation of the Pozzolanic Activity of Sewage Sludge Ash. ISRN Chemical Engineering, 2012, 1–8. doi:10.5402/2012/487037.
Montalvan, E. L. T., & Boscov, M. E. G. (2016). Geotechnical Characterization of a Soil-Water Treatment Sludge Mixture. Geo-Chicago, 271, 418–427. doi:10.1061/9780784480144.041.
Marchiori, L., Studart, A., Albuquerque, A., Pais, L. A., Boscov, M. E., & Cavaleiro, V. (2022). Mechanical and Chemical Behaviour of Water Treatment Sludge and Soft Soil Mixtures for Liner Production. The Open Civil Engineering Journal, 16(1). doi:10.2174/18741495-v16-e221115-2022-27.
Godoy, L. G. G. de, Rohden, A. B., Garcez, M. R., Costa, E. B. da, Da Dalt, S., & Andrade, J. J. de O. (2019). Valorization of water treatment sludge waste by application as supplementary cementitious material. Construction and Building Materials, 223, 939–950. doi:10.1016/j.conbuildmat.2019.07.333.
Bandieira, M., Zat, T., Schuster, S. L., Justen, L. H., Weide, H., & RodrÃguez, E. D. (2021). Water treatment sludge in the production of red-ceramic bricks: effects on the physico-mechanical properties. Materials and Structures, 54(4), 168. doi:10.1617/s11527-021-01764-0.
Silva, A. R. (2021). Geotechnical behavior of mixture of lateritic clay sand and sludge from the Taiaçupeba water treatment, Suzano, São Paulo. Master Thesis, University of Sao Paulo, São Paulo, Brazil.
Naamane, S., Rais, Z., & Taleb, M. (2016). The effectiveness of the incineration of sewage sludge on the evolution of physicochemical and mechanical properties of Portland cement. Construction and Building Materials, 112, 783–789. doi:10.1016/j.conbuildmat.2016.02.121.
Mojapelo, K. S., Kupolati, W. K., Ndambuki, J. M., Sadiku, E. R., & Ibrahim, I. D. (2021). Utilization of wastewater sludge for lightweight concrete and the use of wastewater as curing medium. Case Studies in Construction Materials, 15, 667. doi:10.1016/j.cscm.2021.e00667.
Lothenbach, B., & Nonat, A. (2015). Calcium silicate hydrates: Solid and liquid phase composition. Cement and Concrete Research, 78, 57–70. doi:10.1016/j.cemconres.2015.03.019.
Kumar, A., & Sivapullaiah, P. (2014). Mineralogical and microstructural induced compressibility behavior of lime stabilized expansive soil. International Symposium Geohazards: Science, Engineering and Managemen, 502–513.
Punmia, B., & Jain, A. K. (2005). Soil mechanics and foundations. Laxmi Publications, Delhi, India.
Yamusa, Y. B., Ahmad, K., & Abd Rahman, N. (2018). Hydraulic Conductivity and Volumetric Shrinkage Properties Review on Gradation Effect of Compacted Laterite Soil Liner. Malaysian Journal of Civil Engineering, 29, 153–164. doi:10.11113/mjce.v29.15689.
Fattah, M. Y., Salim, N. M., & Irshayyid, E. J. (2021). Swelling Behavior of Unsaturated Expansive Soil. Transportation Infrastructure Geotechnology, 8(1), 37–58. doi:10.1007/s40515-020-00112-z.
Eberemu, A. O. (2011). Desiccation induced shrinkage of compacted tropical clay treated with rice husk ash. International Journal of Engineering Research in Africa, 6, 45–64. doi:10.4028/www.scientific.net/JERA.6.45.
Osinubi, K. J., & Eberemu, A. O. (2008). Effect of desiccation on compacted lateritic soil treated with bagasse ash. Materials Society of Nigeria (MSN) Zaria Chapter Book of Proceedings, 1-10.
Bello, A. A. (2011). The use of Standard Proctor for the determination of Shrinkage Properties of Reddish Brown Tropical soil. Leonardo Journal of Sciences, 19, 57-68.
Costa, S., Kodikara, J., & Shannon, B. (2013). Salient factors controlling desiccation cracking of clay in laboratory experiments. Geotechnique, 63(1), 18–29. doi:10.1680/geot.9.P.105.
Peron, H., Hueckel, T., Laloui, L., & Hu, L. B. (2009). Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal, 46(10), 1177–1201. doi:10.1139/T09-054.
Peron, H., Laloui, L., Hueckel, T., & Hu, L. B. (2009). Desiccation cracking of soils. European Journal of Environmental and Civil Engineering, 13(7–8), 869–888. doi:10.1080/19648189.2009.9693159.
Costa, S., Kodikara, J., Barbour, S. L., & Fredlund, D. G. (2018). Theoretical analysis of desiccation crack spacing of a thin, long soil layer. Acta Geotechnica, 13(1), 39–49. doi:10.1007/s11440-017-0602-9.
Miller, C. J., Mi, H., & Yesiller, N. (1998). Experimental analysis of desiccation crack propagation in clay liners. Journal of the American Water Resources Association, 34(3), 677–686. doi:10.1111/j.1752-1688.1998.tb00964.x.
Miller, C. J., & Rifai, S. (2004). Fiber Reinforcement for Waste Containment Soil Liners. Journal of Environmental Engineering, 130(8), 891–895. doi:10.1061/(asce)0733-9372(2004)130:8(891).
Osinubi, K. J., & Eberemu, A. O. (2010). Desiccation Induced Shrinkage of Compacted Lateritic Soil Treated with Blast Furnace Slag. Geotechnical and Geological Engineering, 28(5), 537–547. doi:10.1007/s10706-010-9308-6.
Albrecht, B. A., & Benson, C. H. (2001). Effect of Desiccation on Compacted Natural Clays. Journal of Geotechnical and Geoenvironmental Engineering, 127(1), 67–75. doi:10.1061/(asce)1090-0241(2001)127:1(67).
Epa/625/4-91/025. (1991). Design and Construction of RERA/CERELA Final Covers. United States Environmental Protection Agency, Cincinnati, United States.
Ministry Of Housing and Local Government. (2005). Criteria For Siting Sanitary Landfills: National Strategic Plan For Solid Waste Management, Kuala Lumpur, Malaysia.
Daniel, D. E. (1993). Geotechnical Practice for Waste Disposal. Springer, Dordrecht, Netherlands. doi:10.1007/978-1-4615-3070-1.
Chenna, H. N. P., & Chouksey, S. K. (2024). Comparison of Geotechnical Properties of Landfill Waste in Different Indian Cities. Indian Geotechnical Journal, 1-21. doi:10.1007/s40098-024-01003-7.
Ahmad, S. Z., Ahamad, M. S. S., & Yusoff, M. S. (2014). Spatial effect of new municipal solid waste landfill siting using different guidelines. Waste Management and Research, 32(1), 24–33. doi:10.1177/0734242X13507313.
Head, K. H. (1980). Manual of soil laboratory testing. Pentech press, London, United Kingdom.
Tejeda Montalvan, E. L. (2020). Geotechnical properties of mixtures of water treatment sludge and residual lateritic soils from the State of São Paulo, Ph.D. Thesis, University of Sao Paulo, São Paulo, Brazil.
Han, W. J., Lee, J. S., Lee, D., & Kim, J. (2024). Factors affecting the expansion ratio and flow consistency of expandable foam grout for subsurface improvement. Case Studies in Construction Materials, 21(2024), e03544. doi:10.1016/j.cscm.2024.e03544.
Al-Rawas, A. A., & Goosen, M. F. (2006). Expansive Soils: Recent Advances in Characterization and Treatment. CRC Press, Boca Raton, United States.
Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of Expansive Soils Stabilized with Hydrated Lime and Bagasse Fibres. Procedia Engineering, 143, 658–665. doi:10.1016/j.proeng.2016.06.093.
Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of Fly Ash on Engineering Properties of Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764–767. doi:10.1061/(asce)1090-0241(2004)130:7(764).
Amadi, A. A. (2014). Enhancing durability of quarry fines modified black cotton soil subgrade with cement kiln dust stabilization. Transportation Geotechnics, 1(1), 55–61. doi:10.1016/j.trgeo.2014.02.002.
Osinubi, K. J. (2006). Influence of Compactive Efforts on Lime-Slag Treated Tropical Black Clay. Journal of Materials in Civil Engineering, 18(2), 175–181. doi:10.1061/(asce)0899-1561(2006)18:2(175).
Brooks, R. M. (2009). Soil stabilization with flyash and rice husk ash. ARPA Press, Islamabad, Pakistan.
Kalkan, E. (2009). Effects of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw. Cold Regions Science and Technology, 58(3), 130–135. doi:10.1016/j.coldregions.2009.03.011.
DOI: 10.28991/CEJ-2024-010-11-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 kawther Y.H. Al-Soudany, Mohammed Y. Fattah, Falah H. Rahil

This work is licensed under a Creative Commons Attribution 4.0 International License.