Vibration Control of Corrugated Steel Web Box Girder Bridge with Friction Pendulum Isolation
Downloads
Doi: 10.28991/CEJ-2024-010-10-01
Full Text: PDF
[2] Zhang, J., Li, Y., & Zhang, C. (2024). Pounding induced overturning resistance of FPB-isolated structures considering soil-structure-interactions. Soil Dynamics and Earthquake Engineering, 177, 108416. doi:10.1016/j.soildyn.2023.108416.
[3] He, W., Jiang, L., Wei, B., & Wang, Z. (2021). Influence of pier height on the effectiveness of seismic isolation of friction pendulum bearing for single-track railway bridges. Smart Structures and Systems, 28(2), 213–228. doi:10.12989/sss.2021.28.2.213.
[4] Li, B., Wang, B., Wang, S., & Wu, X. (2020). Energy response analysis of continuous beam bridges with friction pendulum bearing by multihazard source excitations. Shock and Vibration, 2020, 1–17. doi:10.1155/2020/3724835.
[5] Chen, X., Wu, P., & Li, C. (2022). Seismic performance assessment of base-isolated tall pier bridges using friction pendulum bearings achieving resilient design. Structures, 38, 618–629. doi:10.1016/j.istruc.2022.02.032.
[6] Meng, D., Hu, S., Yang, M., Hu, R., & He, X. (2023). Experimental evaluation of the seismic isolation effectiveness of friction pendulum bearings in bridges considering transverse poundings. Soil Dynamics and Earthquake Engineering, 170, 107926. doi:10.1016/j.soildyn.2023.107926.
[7] Gino, D., Miceli, E., & Castaldo, P. (2022). Seismic reliability analysis of isolated deck bridges using friction pendulum devices. Procedia Structural Integrity, 44, 1435–1442. doi:10.1016/j.prostr.2023.01.184.
[8] Gupta, P. K., Agrawal, S., Ghosh, G., S, P., Kumar, V., & Paramasivam, P. (2023). Seismic behaviour of the curved bridge with friction pendulum system. Journal of Asian Architecture and Building Engineering, 1–14. doi:10.1080/13467581.2023.2292089.
[9] Zhao, G., He, H., Ma, Y., & Yang, H. (2023). Analysis on seismic response of frictional pendulum isolated bridges limited by Rotational Mass Friction Damper. China Civil Engineering Journal, 56(2), 46–57. doi:10.15951/j.tmgcxb.2022.0403.
[10] Li, C., Zhang, P., Li, Y., & Zhang, J. (2023). Effects of friction pendulum bearing wear on seismic performance of long-span continuous girder bridge. Journal of Vibroengineering, 25(3), 506–521. doi:10.21595/jve.2022.22915.
[11] Wang, B., Xiao, Z., Zou, W., & Xu, Y. (2023). Experimental investigation on the broke force of shear pin for friction pendulum bearing. Earthquake Engineering and Engineering Dynamics, 43(5), 112–119. doi:10.13197/j.eeed.2023.0511.
[12] Cao, S., Ozbulut, O. E., Dang, X., & Tan, P. (2024). Experimental and numerical investigations on adaptive stiffness double friction pendulum systems for seismic protection of bridges. Soil Dynamics and Earthquake Engineering, 176, 108302. doi:10.1016/j.soildyn.2023.108302.
[13] Wei, B., Yang, Z., Xiao, B., Jiang, L., & Yu, Y. (2024). Simplified design theory of variable curvature friction pendulum bearing with adaptive capability and its application in railway bridge. Structures, 63, 106370. doi:10.1016/j.istruc.2024.106370.
[14] Chang, H., Liu, L., Yang, S., & Liu, X. (2024). Seismic isolation effect of tunable friction pendulum system in bridge. Australian Journal of Structural Engineering, 25(2), 212–224. doi:10.1080/13287982.2023.2293319.
[15] Liu, Q., J, N. S., & Xu, L. (n.d.). Seismic isolation analysis of corrugated steel web continuous girder bridge with long span and long segment. Journal of China & Foreign Highway, 39(3), 119–124.
[16] Han, M., Dong, Y., Wang, T., Du, M., & Gao, Q. (2024). Fragility Assessment of a Long-Unit Prestressed Concrete Composite Continuous Girder Bridge with Corrugated Steel Webs Subjected to Near-Fault Pulse-like Ground Motions Considering Spatial Variability Effects. Buildings, 14(2), 330. doi:10.3390/buildings14020330.
[17] Wei, B., Wan, K., Wang, W., Hu, Z., Jiang, L., & Li, S. (2023, May). Seismic isolation effect of a new type of friction pendulum bearing in high-speed railway girder bridge. Structures, 51, 776-790. doi:10.1016/j.istruc.2023.03.077.
[18] Zhu, S. Y. (2013). The webs' stability analysis of long-span corrugated steel web PC box-girder bridges. Chongqing Jiaotong University, Chongqing, China. (In Chinese).
[19] Guo, Y. (2021). Study on static and dynamic performance of single box three-cell PC box girder bridges with corrugated steel webs with variable cross-sections. Taiyuan University of Technology, Taiyuan, China. (In Chinese).
[20] Xiao, L. (2020). Study on long period ground motion response and damping of flexible bridges based on response spectrum modification. Wuhan University of Technology, Wuhan, China. (In Chinese).
[21] JTG/TB02-01-2008. (2008). Guidelines for seismic design of highway bridges. People's Communications Press, Beijing, China. (In Chinese).
[22] Newmark, N. M. (1959). A Method of Computation for Structural Dynamics. Journal of the Engineering Mechanics Division, 85(3), 67–94. doi:10.1061/jmcea3.0000098.
[23] Jia, Y., Zhao, R., Liao, P., Zhan, Y., & Li, F. (2018). Parameter Optimization and Damping Effect of Hyperbolic Surface Friction Pendulum Bearing for Continuous Girder Bridge under Rare Earthquake. China Railway Science, 39(3), 31–40. doi:10.3969/j.issn.1001-4632.2018.03.05.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.