Vibration Control of Corrugated Steel Web Box Girder Bridge with Friction Pendulum Isolation
Abstract
Doi: 10.28991/CEJ-2024-010-10-01
Full Text: PDF
Keywords
References
Zhan, Y. L., Zhang, L., Zhang, Q., & Jiang, Z. X. (2018). Effects of Parameters of Friction Pendulum Bearings on Seismic Responses of Seismically Isolated Bridge. Bridge Construction, 48(3), 45–49.
Zhang, J., Li, Y., & Zhang, C. (2024). Pounding induced overturning resistance of FPB-isolated structures considering soil-structure-interactions. Soil Dynamics and Earthquake Engineering, 177, 108416. doi:10.1016/j.soildyn.2023.108416.
He, W., Jiang, L., Wei, B., & Wang, Z. (2021). Influence of pier height on the effectiveness of seismic isolation of friction pendulum bearing for single-track railway bridges. Smart Structures and Systems, 28(2), 213–228. doi:10.12989/sss.2021.28.2.213.
Li, B., Wang, B., Wang, S., & Wu, X. (2020). Energy response analysis of continuous beam bridges with friction pendulum bearing by multihazard source excitations. Shock and Vibration, 2020, 1–17. doi:10.1155/2020/3724835.
Chen, X., Wu, P., & Li, C. (2022). Seismic performance assessment of base-isolated tall pier bridges using friction pendulum bearings achieving resilient design. Structures, 38, 618–629. doi:10.1016/j.istruc.2022.02.032.
Meng, D., Hu, S., Yang, M., Hu, R., & He, X. (2023). Experimental evaluation of the seismic isolation effectiveness of friction pendulum bearings in bridges considering transverse poundings. Soil Dynamics and Earthquake Engineering, 170, 107926. doi:10.1016/j.soildyn.2023.107926.
Gino, D., Miceli, E., & Castaldo, P. (2022). Seismic reliability analysis of isolated deck bridges using friction pendulum devices. Procedia Structural Integrity, 44, 1435–1442. doi:10.1016/j.prostr.2023.01.184.
Gupta, P. K., Agrawal, S., Ghosh, G., S, P., Kumar, V., & Paramasivam, P. (2023). Seismic behaviour of the curved bridge with friction pendulum system. Journal of Asian Architecture and Building Engineering, 1–14. doi:10.1080/13467581.2023.2292089.
Zhao, G., He, H., Ma, Y., & Yang, H. (2023). Analysis on seismic response of frictional pendulum isolated bridges limited by Rotational Mass Friction Damper. China Civil Engineering Journal, 56(2), 46–57. doi:10.15951/j.tmgcxb.2022.0403.
Li, C., Zhang, P., Li, Y., & Zhang, J. (2023). Effects of friction pendulum bearing wear on seismic performance of long-span continuous girder bridge. Journal of Vibroengineering, 25(3), 506–521. doi:10.21595/jve.2022.22915.
Wang, B., Xiao, Z., Zou, W., & Xu, Y. (2023). Experimental investigation on the broke force of shear pin for friction pendulum bearing. Earthquake Engineering and Engineering Dynamics, 43(5), 112–119. doi:10.13197/j.eeed.2023.0511.
Cao, S., Ozbulut, O. E., Dang, X., & Tan, P. (2024). Experimental and numerical investigations on adaptive stiffness double friction pendulum systems for seismic protection of bridges. Soil Dynamics and Earthquake Engineering, 176, 108302. doi:10.1016/j.soildyn.2023.108302.
Wei, B., Yang, Z., Xiao, B., Jiang, L., & Yu, Y. (2024). Simplified design theory of variable curvature friction pendulum bearing with adaptive capability and its application in railway bridge. Structures, 63, 106370. doi:10.1016/j.istruc.2024.106370.
Chang, H., Liu, L., Yang, S., & Liu, X. (2024). Seismic isolation effect of tunable friction pendulum system in bridge. Australian Journal of Structural Engineering, 25(2), 212–224. doi:10.1080/13287982.2023.2293319.
Liu, Q., J, N. S., & Xu, L. (n.d.). Seismic isolation analysis of corrugated steel web continuous girder bridge with long span and long segment. Journal of China & Foreign Highway, 39(3), 119–124.
Han, M., Dong, Y., Wang, T., Du, M., & Gao, Q. (2024). Fragility Assessment of a Long-Unit Prestressed Concrete Composite Continuous Girder Bridge with Corrugated Steel Webs Subjected to Near-Fault Pulse-like Ground Motions Considering Spatial Variability Effects. Buildings, 14(2), 330. doi:10.3390/buildings14020330.
Wei, B., Wan, K., Wang, W., Hu, Z., Jiang, L., & Li, S. (2023, May). Seismic isolation effect of a new type of friction pendulum bearing in high-speed railway girder bridge. Structures, 51, 776-790. doi:10.1016/j.istruc.2023.03.077.
Zhu, S. Y. (2013). The webs’ stability analysis of long-span corrugated steel web PC box-girder bridges. Chongqing Jiaotong University, Chongqing, China. (In Chinese).
Guo, Y. (2021). Study on static and dynamic performance of single box three-cell PC box girder bridges with corrugated steel webs with variable cross-sections. Taiyuan University of Technology, Taiyuan, China. (In Chinese).
Xiao, L. (2020). Study on long period ground motion response and damping of flexible bridges based on response spectrum modification. Wuhan University of Technology, Wuhan, China. (In Chinese).
JTG/TB02-01-2008. (2008). Guidelines for seismic design of highway bridges. People's Communications Press, Beijing, China. (In Chinese).
Newmark, N. M. (1959). A Method of Computation for Structural Dynamics. Journal of the Engineering Mechanics Division, 85(3), 67–94. doi:10.1061/jmcea3.0000098.
Jia, Y., Zhao, R., Liao, P., Zhan, Y., & Li, F. (2018). Parameter Optimization and Damping Effect of Hyperbolic Surface Friction Pendulum Bearing for Continuous Girder Bridge under Rare Earthquake. China Railway Science, 39(3), 31–40. doi:10.3969/j.issn.1001-4632.2018.03.05.
DOI: 10.28991/CEJ-2024-010-10-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Wei Jing
This work is licensed under a Creative Commons Attribution 4.0 International License.