Effect of Climate Change on Wetland Areas in West Iraq Using Satellite Data and GIS Techniques

Waqed H. Hassan, Suhail T. Khazaal, Musa H. Al-Shammari

Abstract


Iraq is considered to amongst those countries in the Middle Eastern region that are most exposed to the effects of climate change, which will have notable effects on wet areas and lakes. Natural or industrial water resources must be paid particular attention due to their importance in preserving environmental and biological systems, in addition to their economic and social importance. As a result of the effects of climatic change, water resources in Iraq have seen a multitude of changes. The aim of this study is to determine changes in the wetland area around AL-Razzaza Lake, Karbala province, Iraq, during the years 2000, 2005, 2010, 2015, and 2023. Landsat 5 satellite data from 2000, 2005, and 2010, and Landsat 8 and 9 data for 2015 and 2023, respectively, were used in this analysis, which was conducted using NDWI as a free, open-source program (ArcMap 10.8) to detect these changes; NDWI is a natural water anisotropy index used to detect the surface area of bodies of water in satellite images. The results revealed a clear decrease throughout the study period, as the wetland area of the lake in 2000 was 1189.7 km2, which represents a decrease of 34.3% compared to the total area of the lake (1810 km2); it decreased by 52.7% in 2005 (855.5 km2) and continued to decrease for 2010, 2015, and 2023, by 79.2%, 80%, and 85%, (376.5 km2, 362.9 km2, and 270.4 km2, respectively). The wetland area of Al-Razzaza Lake decreased between 2000 and 2023 by 919.3 km2, that is, an average of 40 km2per year. It was found that the lake wetland area sharply declined over the study period due to a lack of water surface resources via the Euphrates River, as well as climatic changes and poor water resource management. It is anticipated that the lake will lose more than half its current wetland area by 2040 if the current decline continues. These results are considered important in terms of preparing a strategic plan to preserve water bodies and wet areas in Iraq, including Al-Razzaza Lake. Remote sensing and GIS technologies have played a major and essential role in detecting such changes.

 

Doi: 10.28991/CEJ-2024-010-09-013

Full Text: PDF


Keywords


AL-Razzaza Lake; GIS; Wetland Area; Satellite Data; NDWI; Remote Sensing.

References


Xu, D., Bisht, G., Tan, Z., Sinha, E., Di Vittorio, A. V., Zhou, T., Ivanov, V. Y., & Leung, L. R. (2024). Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes. Nature Communications, 15(1), 2438. doi:10.1038/s41467-024-45286-z.

Mahdian, M., Noori, R., Salamattalab, M. M., Heggy, E., Bateni, S. M., Nohegar, A., Hosseinzadeh, M., Siadatmousavi, S. M., Fadaei, M. R., & Abolfathi, S. (2024). Anzali Wetland Crisis: Unraveling the Decline of Iran’s Ecological Gem. Journal of Geophysical Research: Atmospheres, 129(4), 2023 039538. doi:10.1029/2023JD039538.

Esper, J., Torbenson, M., & Büntgen, U. (2024). 2023 Summer Warmth Unparalleled Over the Past 2,000 Years. Nature, 631(8019), 94–97. doi:10.1038/s41586-024-07512-y.

Lemus-Canovas, M., Montesinos-Ciuró, E., Cearreta-Innocenti, T., Serrano-Notivoli, R., & Royé, D. (2024). Attribution of the unprecedented heat event of August 2023 in Barcelona (Spain) to observed and projected global warming. Urban Climate, 56, 102019. doi:10.1016/j.uclim.2024.102019.

Luan, G., Zhao, F., Xia, J., Huang, Z., Feng, S., Song, C., Dong, P., & Zhou, X. (2024). Analysis of long-term spatio-temporal changes of plateau urban wetland reveals the response mechanisms of climate and human activities: A case study from Dianchi Lake Basin 1993–2020. Science of the Total Environment, 912, 169447. doi:10.1016/j.scitotenv.2023.169447.

Pishdad, L., Sadoddin, A., & Najafinejad, A. (2024). Predicting the impacts of anthropogenic drivers on management scenarios using Bayesian belief network in the Zeribar freshwater wetland, Iran. Journal for Nature Conservation, 78, 126570. doi:10.1016/j.jnc.2024.126570.

Hassan, W. H., & Khalaf, R. M. (2020). Optimum Groundwater use Management Models by Genetic Algorithms in Karbala Desert, Iraq. IOP Conference Series: Materials Science and Engineering, 928, 2. doi:10.1088/1757-899X/928/2/022141.

Mohsen, K. A., Nile, B. K., & Hassan, W. H. (2020). Experimental work on improving the efficiency of storm networks using a new galley design filter bucket. IOP Conference Series: Materials Science and Engineering, 671(1), 012094. doi:10.1088/1757-899x/671/1/012094.

Neira, M., Erguler, K., Ahmady-Birgani, H., Al-Hmoud, N. D., Fears, R., Gogos, C., ... & Christophides, G. (2023). Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions. Environmental research, 216, 114537. doi:10.1016/j.envres.2022.114537.

Hassan, W. H., Hussein, H. H., & Nile, B. K. (2022). The effect of climate change on groundwater recharge in unconfined aquifers in the western desert of Iraq. Groundwater for Sustainable Development, 16, 100700. doi:10.1016/j.gsd.2021.100700.

Mohammed, Z. M., & Hassan, W. H. (2022). Climate change and the projection of future temperature and precipitation in southern Iraq using a LARS-WG model. Modeling Earth Systems and Environment, 8(3), 4205–4218. doi:10.1007/s40808-022-01358-x.

Hassan, W. H., & Hashim, F. S. (2021). Studying the impact of climate change on the average temperature using CanESM2 and HadCM3 modelling in Iraq. International Journal of Global Warming, 24(2), 131–148. doi:10.1504/IJGW.2021.115898.

Hassan, W., Faisal, A., Abed, E., Al-Ansari, N., & Saleh, B. (2021). New Composite Sorbent for Removal of Sulfate Ions from Simulated and Real Groundwater in the Batch and Continuous Tests. Molecules, 26(14), 4356. doi:10.3390/molecules26144356.

Abbas, N., Wasimi, S. A., & Al-Ansari, N. (2016). Assessment of climate change impacts on water resources of Khabur in kurdistan, Iraq using swat model. Journal of Environmental Hydrology, 24, 716–732. doi:10.4236/eng.2016.810064.

Rashed, A. M., Alhadithi, M., & Alattar, F. M. (2024). Applying geographic information systems (GIS) techniques to estimate surface area of Al-Razzaza Lake, Karbala province, Iraq. IOP Conference Series: Earth and Environmental Science, 1300(1), 12008. doi:10.1088/1755-1315/1300/1/012008.

Khalaf, R. M., & Hassan, W. H. (2013). Evaluation of irrigation water quality index IWQI for Al-Dammam confined aquifer in the west and southwest of Karbala city, Iraq. International Journal of Civil Engineering IJCE, 23, 21-34.

Islam, M. N., Rakib, M. R., Sufian, M. A., & Raihan Sharif, A. H. M. (2018). Detection of climate change impacts on the hakaluki haor wetland in Bangladesh by use of remote sensing and GIS. Springer Climate, 195–214. doi:10.1007/978-3-319-26357-1_8.

Khalaf, R. M., Hussein, H. H., Hassan, W. H., Mohammed, Z. M., & Nile, B. K. (2022). Projections of precipitation and temperature in Southern Iraq using a LARS-WG Stochastic weather generator. Physics and Chemistry of the Earth, 128, 103224. doi:10.1016/j.pce.2022.103224.

Reis, S., & Yilmaz, H. M. (2008). Temporal monitoring of water level changes in Seyfe Lake using remote sensing. Hydrological Processes, 22(22), 4448–4454. doi:10.1002/hyp.7047.

Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., ... & Dickinson, R. (2013). The role of satellite remote sensing in climate change studies. Nature climate change, 3(10), 875-883. doi:10.1038/nclimate1908.

Ebrahimi-Khusfi, Z., Ghazavi, R., & Zarei, M. (2020). The Effect of Climate Changes on the Wetland Moisture Variations and Its Correlation with Sand-Dust Events in a Semiarid Environment, Northwestern Iran. Journal of the Indian Society of Remote Sensing, 48(12), 1797–1808. doi:10.1007/s12524-020-01203-7.

Somasundaram, D., Zhang, F., Ediriweera, S., Wang, S., Li, J., & Zhang, B. (2020). Spatial and temporal changes in surface water area of sri lanka over a 30-year period. Remote Sensing, 12(22), 1–23. doi:10.3390/rs12223701.

Al-Qaraghuli, S. A., Hassan, A. A., Albaldawi, R. A., & Abd, O. K. (2021). The Effect of Climate Changes on the Fluctuation of the Water Level of Al- Razzaza Lake, Iraq. Iraqi Journal of Science, 62(11), 4464–4474. doi:10.24996/ijs.2021.62.11(SI).27.

Cavelan, A., Golfier, F., Colombano, S., Davarzani, H., Deparis, J., & Faure, P. (2022). A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. Science of the Total Environment, 806, 150412. doi:10.1016/j.scitotenv.2021.150412.

Mukheef, R. A. H., Hassan, W. H., & Alquzweeni, S. (2024). Projections of temperature and precipitation trends using CMhyd under CMIP6 scenarios: A case study of Iraq’s Middle and West. Atmospheric Research, 306, 107470. doi:10.1016/j.atmosres.2024.107470.

Changwony, C., Sichangi, A. W., & Murimi Ngigi, M. (2017). Using GIS and Remote Sensing in Assessment of Water Scarcity in Nakuru County, Kenya. Advances in Remote Sensing, (01), 88–102. doi:10.4236/ars.2017.61007.

Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10, 381-402. doi:10.1023/A:1020908432489.

Jumaah, H. J., Ameen, M. H., Mohamed, G. H., & Ajaj, Q. M. (2022). Monitoring and evaluation Al-Razzaza lake changes in Iraq using GIS and remote sensing technology. Egyptian Journal of Remote Sensing and Space Science, 25(1), 313–321. doi:10.1016/j.ejrs.2022.01.013.

Al-Lami, A. K., Abbood, R. A., Al Maliki, A. A., Hussain, H. M., & Alabidi, A. J. (2023). Using of Different Satellite-Derived Indices to Detect the Spatiotemporal Changes of the Al-Razzaza Lake, Iraq. Iraqi Journal of Science, 64(2), 1030–1040. doi:10.24996/ijs.2023.64.2.44.

Bhattacharjee, S., Islam, M. T., Kabir, M. E., & Kabir, M. M. (2021). Land-use and land-cover change detection in a north-eastern wetland ecosystem of Bangladesh using remote sensing and GIS techniques. Earth Systems and Environment, 5(2), 319-340. doi:10.1007/s41748-021-00228-3.

Youssef, Y. M., Gemail, K. S., Atia, H. M., & Mahdy, M. (2024). Insight into land cover dynamics and water challenges under anthropogenic and climatic changes in the eastern Nile Delta: Inference from remote sensing and GIS data. Science of the Total Environment, 913, 169690. doi:10.1016/j.scitotenv.2023.169690.

Chidammodzi, C. L., & Muhandiki, V. S. (2017). Water resources management and Integrated Water Resources Management implementation in Malawi: Status and implications for lake basin management. Lakes and Reservoirs: Science, Policy and Management for Sustainable Use, 22(2), 101–114. doi:10.1111/lre.12170.

Saatsaz, M. (2020). A historical investigation on water resources management in Iran. Environment, Development and Sustainability, 22(3), 1749–1785. doi:10.1007/s10668-018-00307-y.

Hassan, W. H., Nile, B. K., Mahdi, K., Wesseling, J., & Ritsema, C. (2021). A feasibility assessment of potential artificial recharge for increasing agricultural areas in the Karbala desert in Iraq using numerical groundwater modeling. Water (Switzerland), 13(22), 3167. doi:10.3390/w13223167.

Hassan, W. H., Ghanim, A. A. J., Mahdi, K., Adham, A., Mahdi, F. A., Nile, B. K., Riksen, M., & Ritsema, C. (2023). Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater. Water (Switzerland), 15(4), 695. doi:10.3390/w15040695.

Ahmed, A. A., Sayed, S., Abdoulhalik, A., Moutari, S., & Oyedele, L. (2024). Applications of machine learning to water resources management: A review of present status and future opportunities. Journal of Cleaner Production, 441, 140715. doi:10.1016/j.jclepro.2024.140715.

Adham, A., Abed, R., Mahdi, K., Hassan, W. H., Riksen, M., & Ritsema, C. (2023). Rainwater Catchment System Reliability Analysis for Al Abila Dam in Iraq’s Western Desert. Water (Switzerland), 15(5), 944. doi:10.3390/w15050944.

Ridwana, R., & Himayah, S. (2020). Utilization of Remote Sensing Technology and Geographic Information Systems for Tourism Development. International Journal of Applied Sciences in Tourism and Events, 4(2), 158–169. doi:10.31940/ijaste.v4i2.2042.

Faris, A. M., Nile, B. K., Mussa, Z. H., Alesary, H. F., Al Juboury, M. F., Hassan, W. H., Al-Bahrani, H. A., & Barton, S. (2022). Fate and emission of methyl mercaptan in a full-scale MBBR process by TOXCHEM simulation. Journal of Water and Climate Change, 13(6), 2386–2398. doi:10.2166/wcc.2022.438.

Yanti, D., Megantara, I., Akbar, M., Meiwanda, S., Izzul, S., Sugandi, D., & Ridwana, R. (2020). Vegetation Density Analysis in Pangandaran District using Landsat 8 Imagery. Jurnal Geografi, Edukasi dan Lingkungan (JGEL), 4(1), 32-38. doi:10.29405/jgel.v4i1.4229.

Mohammed, E. A., Hani, Z. Y., & Kadhim, G. Q. (2018). Assessing land cover/use changes in Karbala city (Iraq) using GIS techniques and remote sensing data. Journal of Physics: Conference Series, 1032(1), 12047. doi:10.1088/1742-6596/1032/1/012047.

Hassan, W. H., Nile, B. K., Kadhim, Z. K., Mahdi, K., Riksen, M., & Thiab, R. F. (2023). Trends, forecasting and adaptation strategies of climate change in the middle and west regions of Iraq. SN Applied Sciences, 5(12), 312. doi:10.1007/s42452-023-05544-z.

Cone, J. (1998). Principles of Geographical Information Systems by Peter A. New Zealand Geographer, 54(2), 56-57. doi:10.1111/j.1745-7939.1998.tb02089.x.

Hassan, W. H., & N. Ghazi, Z. (2023). Assessing Artificial Recharge on Groundwater Quantity Using Wells Recharge. Civil Engineering Journal (Iran), 9(9), 2233–2248. doi:10.28991/CEJ-2023-09-09-010.

Nada, K. B., Salman, M. S., Harpy, A. F., Ajeena, A. R., & Falih, A. H. (2022). Stabl Isotopes and Hydrochemical Parameter As Indicators of Al-Razzaza Lake Water Interaction With Groundwater Surrounding / Karbala Governorate-Iraq. Iraqi Journal of Agricultural Sciences, 53(2), 341–352. doi:10.36103/ijas.v53i2.1541.

Ali Al-Anbari, M., Yahya Othman, N., Mulahasan, S., Abeyes, H. H., Hussein Buraihi Al-Ganem, F., & Muslem Owayed, M. (2022). Razzaza Lake, a natural water body: its hydraulic characteristics and water quality. Innovative Infrastructure Solutions, 7(3), 225. doi:10.1007/s41062-022-00824-w.

Faisal, A. A. H., Taha, D. S., Hassan, W. H., Lakhera, S. K., Ansar, S., & Pradhan, S. (2023). Subsurface flow constructed wetlands for treating of simulated cadmium ions-wastewater with presence of Canna Indica and Typha domingensis. Chemosphere, 338, 139469. doi:10.1016/j.chemosphere.2023.139469.

Chuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach. CRC Press, Florida, United States. doi:10.1201/9780429506482.

Lopez, T., Al Bitar, A., Biancamaria, S., Güntner, A., & Jäggi, A. (2020). On the Use of Satellite Remote Sensing to Detect Floods and Droughts at Large Scales. Surveys in Geophysics, 41(6), 1461–1487. doi:10.1007/s10712-020-09618-0.

Aber, J. S., Ries, J. B., & Marzolff, I. (2010). Small-format aerial photography: Principles, techniques and geoscience applications. Small-Format Aerial Photography: Principles, Techniques and Geoscience Applications. doi:10.1016/C2009-0-18493-3.

D., S., Deepa, P., & K., V. (2017). Remote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey. International Journal of Computer Applications, 161(11), 24–37. doi:10.5120/ijca2017913306.

Ratnaparkhi, N. S. (2020). Satellite Image Pre-Processing for Interactive Image Interpretation. International Journal of Research and Analytical Reviews, 7(1), 961-965.

Hassan, W. H. (2021). Climate change projections of maximum temperatures for southwest Iraq using statistical downscaling. Climate Research, 83, 187–200. doi:10.3354/cr01647.

Chang, Y., Yan, L., Wu, T., & Zhong, S. (2016). Remote Sensing Image Stripe Noise Removal: From Image Decomposition Perspective. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7018–7031. doi:10.1109/TGRS.2016.2594080.

P.Dave, C., Joshi, R., & S. Srivastava, S. (2015). A Survey on Geometric Correction of Satellite Imagery. International Journal of Computer Applications, 116(12), 24–27. doi:10.5120/20389-2655.

Chen, X., Vierling, L., & Deering, D. (2005). A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98(1), 63–79. doi:10.1016/j.rse.2005.05.021.

Gao, B. C., Montes, M. J., Davis, C. O., & Goetz, A. F. H. (2009). Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113(Suppl. 1), 17– 24. doi:10.1016/j.rse.2007.12.015.

Qian, Y., Qiu, F., Chang, J., & Zhang, K. (2008). Visualization-informed noise elimination and its application in processing high-spatial-resolution remote sensing imagery. Computers and Geosciences, 34(1), 35–52. doi:10.1016/j.cageo.2007.02.006.

Richards, J. A. (2022). Remote sensing digital image analysis. Remote Sensing Digital Image Analysis, Springer, Berlin/Heidelberg, Germany. doi:10.1007/978-3-030-82327-6.

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033). doi:10.1080/01431160600589179.

Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal landsat imagery. Remote Sensing, 6(5), 4173–4189. doi:10.3390/rs6054173.

Özelkan, E. (2020). Water body detection analysis using NDWI indices derived from landsat-8 OLI. Polish Journal of Environmental Studies, 29(2), 1759–1769. doi:10.15244/pjoes/110447.

United Nations (2024). What is Climate Change?. Climate Action, United Nations, New York, United States. Available online: https://www.un.org/en/climatechange/what-is-climate-change (accessed on August 2024).


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Waqed Hammed Hassan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message