Polyethylene Terephthalate Modified Asphalt Concrete with Blended Recycled Aggregates: Analysis and Assessment
Downloads
Doi: 10.28991/CEJ-2024-010-11-08
Full Text: PDF
Downloads
[2] Mulungye, R. M., Owende, P. M. O., & Mellon, K. (2007). Finite element modelling of flexible pavements on soft soil subgrades. Materials and Design, 28(3), 739–756. doi:10.1016/j.matdes.2005.12.006.
[3] NPS. (2007). Pavement Distress Identification Manual. Federal Highway Administration, Department of Transportation, Washington, United States.
[4] Kasikitwiwat, P., Thongchart, S., Prayongphan, S., & Jantarachot, K. (2021). Comparative Study of Tensile Strength Ratio of Asphalt Concrete Mixed with AC 60-70 and Polymer Modified Asphalt. Engineering Journal, 25(10), 51–60. doi:10.4186/ej.2021.25.10.51.
[5] Al-Khateeb, G., & Shenoy, A. (2004). A distinctive fatigue failure criterion. Journal of the association of asphalt paving technologists, 73, 585-622.
[6] Tangella, S. R., Craus, J., Deacon, J. A., & Monismith, C. L. (1990). Summary report on fatigue response of asphalt mixtures No. SHRP-A-312, Strategic Highway Research Program, Washington, United States.
[7] Perng, J. D. (1989). Analysis of crack propagation in asphalt concrete using a cohesive crack model. Master Thesis, The Ohio State University, Columbus, United States.
[8] Sadeq, M., Al-Khalid, H., Masad, E., & Sirin, O. (2016). Comparative evaluation of fatigue resistance of warm fine aggregate asphalt mixtures. Construction and Building Materials, 109, 8–16. doi:10.1016/j.conbuildmat.2016.01.045.
[9] Aghayan, I., & Khafajeh, R. (2019). Recycling of PET in asphalt concrete. Use of Recycled Plastics in Eco-Efficient Concrete, 269–285, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-102676-2.00012-8.
[10] Al-Qadi, I. L., Elseifi, M., & Carpenter, S. H. (2007). Reclaimed asphalt pavement”a literature review. FHWA-ICT-07-001, Illinois Center for Transportation, Rantoul, United States.
[11] Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643. doi:10.1016/j.wasman.2009.06.004.
[12] Aljassar, A. H., Al-Fadala, K. B., & Ali, M. A. (2005). Recycling building demolition waste in hot-mix asphalt concrete: A case study in Kuwait. Journal of Material Cycles and Waste Management, 7(2), 112–115. doi:10.1007/s10163-005-0135-4.
[13] Angelone, S., Cauhapé Casaux, M., Borghi, M., & Martinez, F. O. (2016). Green pavements: reuse of plastic waste in asphalt mixtures. Materials and Structures/Materiaux et Constructions, 49(5), 1655–1665. doi:10.1617/s11527-015-0602-x.
[14] Copeland, A. (2011). Reclaimed asphalt pavement in asphalt mixtures: State of the practice. No. FHWA-HRT-11-021, Office of Research, Development, and Technology, Federal Highway Administration, Washington, United States.
[15] Gautam, P. K., Kalla, P., Jethoo, A. S., Agrawal, R., & Singh, H. (2018). Sustainable use of waste in flexible pavement: A review. Construction and Building Materials, 180, 239–253. doi:10.1016/j.conbuildmat.2018.04.067.
[16] Baghaee Moghaddam, T., Karim, M. R., & Syammaun, T. (2012). Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Construction and Building Materials, 34, 236–242. doi:10.1016/j.conbuildmat.2012.02.054.
[17] Baghaee Moghaddam, T., Soltani, M., & Karim, M. R. (2014). Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test. Materials and Design, 53, 317–324. doi:10.1016/j.matdes.2013.07.015.
[18] Baghaee Moghaddam, T., Soltani, M., & Karim, M. R. (2014). Experimental characterization of rutting performance of Polyethylene Terephthalate modified asphalt mixtures under static and dynamic loads. Construction and Building Materials, 65, 487–494. doi:10.1016/j.conbuildmat.2014.05.006.
[19] Baghaee Moghaddam, T., Soltani, M., Karim, M. R., & Baaj, H. (2015). Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology. Measurement: Journal of the International Measurement Confederation, 74, 159–169. doi:10.1016/j.measurement.2015.07.012.
[20] Purohit, S., Panda, M., & Kumar Das, A. (2022). Performance of waste polyethylene modified bituminous paving mixes containing reclaimed asphalt pavement and recycled concrete aggregate. Construction and Building Materials, 348, 128677. doi:10.1016/j.conbuildmat.2022.128677.
[21] Reyes-Ortiz, O., Berardinelli, E., Alvarez, A. E., Carvajal-Muñoz, J. S., & Fuentes, L. G. (2012). Evaluation of Hot Mix Asphalt Mixtures with Replacement of Aggregates by Reclaimed Asphalt Pavement (RAP) Material. Procedia - Social and Behavioral Sciences, 53, 379–388. doi:10.1016/j.sbspro.2012.09.889.
[22] Sapkota, K., Yaghoubi, E., Wasantha, P. L. P., Van Staden, R., & Fragomeni, S. (2023). Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates. Sustainability (Switzerland), 15(6), 5594. doi:10.3390/su15065594.
[23] Arulrajah, A., Piratheepan, J., Disfani, M. M., & Bo, M. W. (2013). Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications. Journal of Materials in Civil Engineering, 25(8), 1077–1088. doi:10.1061/(asce)mt.1943-5533.0000652.
[24] Jayakody, S., Gallage, C., & Ramanujam, J. (2021). Assessment of RCA with RAP materials for pavement applications. IOP Conference Series: Materials Science and Engineering, 1075(1), 012020. doi:10.1088/1757-899x/1075/1/012020.
[25] Naser, M., Abdel-Jaber, M. tasim, Al-shamayleh, R., Louzi, N., & Ibrahim, R. (2022). Evaluating the effects of using reclaimed asphalt pavement and recycled concrete aggregate on the behavior of hot mix asphalts. Transportation Engineering, 10, 100140. doi:10.1016/j.treng.2022.100140.
[26] Shu, X., Huang, B., & Vukosavljevic, D. (2008). Laboratory evaluation of fatigue characteristics of recycled asphalt mixture. Construction and Building Materials, 22(7), 1323–1330. doi:10.1016/j.conbuildmat.2007.04.019.
[27] Sreeram, A., Leng, Z., Zhang, Y., & Padhan, R. K. (2018). Evaluation of RAP binder mobilisation and blending efficiency in bituminous mixtures: An approach using ATR-FTIR and artificial aggregate. Construction and Building Materials, 179, 245–253. doi:10.1016/j.conbuildmat.2018.05.154.
[28] Abdul-Mawjoud, A. A., & Ismaeel, N. A. (2015). Effects of Level of Reclamation on the Properties of Hot Mix Asphalt Concrete. International Journal of Scientific Research in Knowledge, 3(6), 162–171. doi:10.12983/ijsrk-2015-p0162-0171.
[29] Radević, A., Äureković, A., Zakić, D., & Mladenović, G. (2017). Effects of recycled concrete aggregate on stiffness and rutting resistance of asphalt concrete. Construction and Building Materials, 136, 386–393. doi:10.1016/j.conbuildmat.2017.01.043.
[30] Akkharawongwhatthana, K., Buritatum, A., Suddeepong, A., Horpibulsuk, S., Pongsri, N., Yaowarat, T., Hoy, M., & Arulrajah, A. (2024). Mechanistic Performance of Hybrid Asphalt Concretes with Recycled Aggregates and Hemp Fiber for Low Traffic Roads. Journal of Materials in Civil Engineering, 36(4), 4024004. doi:10.1061/jmcee7.mteng-16864.
[31] Hou, Y., Ji, X., Li, J., & Li, X. (2018). Adhesion between asphalt and recycled concrete aggregate and its impact on the properties of asphalt mixture. Materials, 11(12), 2528. doi:10.3390/ma11122528.
[32] Huang, Q., Qian, Z., Hu, J., Zheng, D., Chen, L., Zhang, M., & Yu, J. (2021). Investigation on the properties of aggregate-mastic interfacial transition zones (ITZs) in asphalt mixture containing recycled concrete aggregate. Construction and Building Materials, 269, 121257. doi:10.1016/j.conbuildmat.2020.121257.
[33] Hagos, E. T., van de Ven, M. F. C., & Merine, G. M. (2012). Investigation into Tensile Properties of Polymer Modified Bitumen (PMB) and Mixture Performance. 7th RILEM International Conference on Cracking in Pavements, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-007-4566-7_82.
[34] Buritatum, A., Suddeepong, A., Akkharawongwhatthana, K., Horpibulsuk, S., Yaowarat, T., Hoy, M., Arulrajah, A., & Rashid, A.S.A. (2023). Hemp Fiber-Modified Asphalt Concretes with Reclaimed Asphalt Pavement for Low-Traffic Roads. Sustainability (Switzerland), 15(8), 6860. doi:10.3390/su15086860.
[35] Shukla, S. R., & Harad, A. M. (2006). Aminolysis of polyethylene terephthalate waste. Polymer Degradation and Stability, 91(8), 1850–1854. doi:10.1016/j.polymdegradstab.2005.11.005.
[36] Laomuad, A., Suddeepong, A., Horpibulsuk, S., Buritatum, A., Yaowarat, T., Akkharawongwhatthana, K., Pongsri, N., Phunpeng, V., Chinkulkijniwat, A., & Arulrajah, A. (2024). Evaluating polyethylene terephthalate in asphalt concrete with reclaimed asphalt pavement for enhanced performance. Construction and Building Materials, 422, 135749. doi:10.1016/j.conbuildmat.2024.135749.
[37] Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., & Shafigh, P. (2011). Using waste plastic bottles as additive for stone mastic asphalt. Materials and Design, 32(10), 4844–4849. doi:10.1016/j.matdes.2011.06.016.
[38] Badejo, A. A., Adekunle, A. A., Adekoya, O. O., Ndambuki, J. M., Kupolati, K. W., Bada, B. S., & Omole, D. O. (2017). Plastic waste as strength modifiers in asphalt for a sustainable environment. African Journal of Science, Technology, Innovation and Development, 9(2), 173–177. doi:10.1080/20421338.2017.1302681.
[39] Taherkhani, H., & Arshadi, M. R. (2019). Investigating the mechanical properties of asphalt concrete containing waste polyethylene terephthalate. Road Materials and Pavement Design, 20(2), 381–398. doi:10.1080/14680629.2017.1395354.
[40] Buritatum, A., Suddeepong, A., Horpibulsuk, S., Akkharawongwhatthana, K., Yaowarat, T., Hoy, M., Bunsong, C., & Arulrajah, A. (2022). Improved Performance of Asphalt Concretes using Bottom Ash as an Alternative Aggregate. Sustainability (Switzerland), 14(12), 7033. doi:10.3390/su14127033.
[41] DH-SP 401/2531. (1988). Specification for asphalt cement. Department of Highways, Bangkok, Thailand. (In Thai).
[42] DH-S 410/2542. (1999). Asphalt Hot-Mix Recycling. Department of Highways, Bangkok, Thailand. (In Thai).
[43] TIS 655 Part 1-2553 (2010) Plastic utensils for food part 1 Polyethylene, Polpropylene, Polystyrene, Poly (Ethlene Terephthalate), Poly (Vinyl Alcohol) and Poly (Methyl Pentene). Thai Industrial Standards Institute, Ministry of Industry, Bangkok, Thailand (In Thai).
[44] ASTM D6927. (2022). Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures, ASTM International, Pennsylvania, United States. doi:10.1520/D6927-15.
[45] T283-22. (2021). Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage. American Association of State Highway and Transportation Officials, Washington, United States.
[46] ASTM D6931-17. (2017). Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D6931-17.
[47] ASTM D4123-82. (1995). Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures (Withdrawn 2003). ASTM International, Pennsylvania, United States.
[48] BS EN 12697-24:2018. (2018). Bituminous mixtures. Test methods Resistance to fatigue. British Standards Institution (BSI), London, United Kingdom.
[49] Aragao, F. T. S., Kim, Y. R., & Lee, J. (2008). Research on Fatigue of Asphalt Mixtures and Pavements in Nebraska. Nebraska Department of Transportation Research Reports. 41, University of Nebraska-Lincoln, Lincoln, United States.
[50] AASHTO_T324-14. (2013). Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[51] ASTM D6925-14. (2024). Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory. ASTM International, Pennsylvania, United States. doi:10.1520/D6925-15.
[52] De Farias, M. M., & Sinisterra, F. Q. (2012). Influence of asphalt rubber on the crushing of recycled aggregates used in dense HMA. Proceeding of Asphalt Rubber, 23-26 October, 2012, Munich, Germany.
[53] Hou, Y., Ji, X., Su, X., Zhang, W., & Liu, L. (2014). Laboratory investigations of activated recycled concrete aggregate for asphalt treated base. Construction and Building Materials, 65, 535–542. doi:10.1016/j.conbuildmat.2014.04.115.
[54] Pasandín, A. R., & Pérez, I. (2013). Laboratory evaluation of hot-mix asphalt containing construction and demolition waste. Construction and Building Materials, 43, 497–505. doi:10.1016/j.conbuildmat.2013.02.052.
[55] Wong, Y. D., Sun, D. D., & Lai, D. (2007). Value-added utilisation of recycled concrete in hot-mix asphalt. Waste Management, 27(2), 294–301. doi:10.1016/j.wasman.2006.02.001.
[56] Modarres, A., & Hamedi, H. (2014). Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Materials and Design, 61, 8–15. doi:10.1016/j.matdes.2014.04.046.
[57] Modarres, A., & Hamedi, H. (2014). Developing laboratory fatigue and resilient modulus models for modified asphalt mixes with waste plastic bottles (PET). Construction and Building Materials, 68, 259–267. doi:10.1016/j.conbuildmat.2014.06.054.
[58] Marín-Uribe, C. R., & Restrepo-Tamayo, L. M. (2022). Experimental study of the tensile strength of hot asphalt mixtures measured with indirect tensile and semi-circular bending tests. Construction and Building Materials, 339, 127651. doi:10.1016/j.conbuildmat.2022.127651.
[59] Kennedy, T. W. (1979). Practical use of the indirect tensile test for the characterisation of pavement materials. Proceedings from the Ninth Australian Road Research Board Conference, 21-25 August, 1978, Brisbane, Australia.
[60] Mohammad, L. N., & Paul, H. R. (1993). Evaluation of indirect tensile test for determining structural properties of asphalt mix. Transportation Research Board, Washington, United States.
[61] Gupta, S., & Veeraragavan, A. (2009). Fatigue behaviour of polymer modified bituminous concrete mixtures. Journal of Indian Road Congress, 70(1), 55-64.
[62] Asphalt Institute Manual Series No. 02. (2014) MS-2 Asphalt Mix Design Methods. 7th Edition, Library of Congress Control Number: 2014943435, Asphalt Institute, Lexington, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.