A Novel Exact Solution of Longshore Current and Its Application on Permeable Groin

Hasdinar Umar, Fuad M. Assidiq, Radianta Triatmadja, Achmad Y. Baeda

Abstract


One major environmental problem exacerbated by longshore currents is beach erosion. Groins are a common defense tactic built perpendicular to the shore. However, conventional impermeable groins promote downstream erosion and disrupt sediment movement. Permeable groins provide a more environmentally friendly option, allowing some sediment to flow through. This study examines the effects of permeable groins on longshore currents. Permeable groins are not included in currently used longshore current equations. This study fills this gap by creating a new longshore current velocity equation considering permeable groins. The longshore current equation with the groin was developed based on the momentum equation in the longshore direction without the influence of lateral mixing and the assumption that base friction will rise due to the groin. Therefore, it was determined that the base shear stress after the groin was equal to the base shear stress plus the drag caused by the groin. The result shows that the longshore current equation through the groin is a function of the breaking wave parameter and the resistance parameter owing to the groin. Longshore current velocities with and without permeable groins of different densities were measured in wave basins. We collected information on groin characteristics, current velocities, and breaking wave heights. This investigation validates the shortcomings of the current equations.

 

Doi: 10.28991/CEJ-2025-011-02-07

Full Text: PDF


Keywords


Friction Coefficient; Groin Density; Longshore Current; Permeable Groin.

References


Nguyen, L. A., Nguyen, M. H., Reynaud, A., & Simioni, M. (2024). A comparative study of residents and tourists’ valuation for a heterogeneous environmental good: The case of coastal erosion. Marine Policy, 161, 106038. doi:10.1016/j.marpol.2024.106038.

Ma, X., Wang, C., Zhao, C., Ji, M., Zhu, J., Yang, G., & Li, C. (2024). Identification and simulation the response of storm-induced coastal erosion in the China Yellow sea. Ocean Engineering, 300, 117394. doi:10.1016/j.oceaneng.2024.117394.

Dong, W. S., Ismailluddin, A., Yun, L. S., Ariffin, E. H., Saengsupavanich, C., Abdul Maulud, K. N., Ramli, M. Z., Miskon, M. F., Jeofry, M. H., Mohamed, J., Mohd, F. A., Hamzah, S. B., & Yunus, K. (2024). The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. Heliyon, 10(4), 25609. doi:10.1016/j.heliyon.2024.e25609.

Deng, B., Wu, H., Yang, S., & Zhang, J. (2017). Longshore suspended sediment transport and its implications for submarine erosion off the Yangtze River Estuary. Estuarine, Coastal and Shelf Science, 190, 1–10. doi:10.1016/j.ecss.2017.03.015.

Jones, B. D., Collings, B., Dickson, M. E., Ford, M., Hikuroa, D., Bickler, S. H., & Ryan, E. (2024). Regional implementation of coastal erosion hazard zones for archaeological applications. Journal of Cultural Heritage, 67, 430–442. doi:10.1016/j.culher.2024.04.007.

Dal Barco, M. K., Furlan, E., Pham, H. V., Torresan, S., Zachopoulos, K., Kokkos, N., Sylaios, G., & Critto, A. (2024). Multi-scenario analysis in the Apulia shoreline: A multi-tiers analytical framework for the combined evaluation and management of coastal erosion and water quality risks. Environmental Science and Policy, 153, 103665. doi:10.1016/j.envsci.2023.103665.

Mensah, J., & Mattah, P. A. D. (2023). Illegal sand mining in coastal Ghana: The drivers and the way forward. Extractive Industries and Society, 13, 101224. doi:10.1016/j.exis.2023.101224.

Lubis, A. M., Veronica, N., Saputra, R., Sinaga, J., Hasanudin, M., & Kusmanto, E. (2020). Investigasi Arus Sejajar Pantai (Longshore Current) di Daerah Abrasi Bengkulu Utara. Jurnal Kelautan Tropis, 23(3), 316–324. doi:10.14710/jkt.v23i3.8045.

Hamid, N., Setyowati, D. L., Juhadi, Priyanto, A. S., Hardati, P., Soleh, M., Wijayanti, N. R., & Aroyandini, E. N. (2021). The Effect of Human Activities Towards Coastal Dynamics and Sustainable Coastal Management. International Journal of Sustainable Development and Planning, 16(8), 1479–1493. doi:10.18280/ijsdp.160809.

Vaidya, A. M., Kori, S. K., & Kudale, M. D. (2015). Shoreline Response to Coastal Structures. Aquatic Procedia, 4, 333–340. doi:10.1016/j.aqpro.2015.02.045.

Guimarães, A., Lima, M., Coelho, C., Silva, R., & Veloso-Gomes, F. (2016). Groin impacts on updrift morphology: Physical and numerical study. Coastal Engineering, 109, 63–75. doi:10.1016/j.coastaleng.2015.12.003.

Lima, M., Coelho, C., Veloso-Gomes, F., & Roebeling, P. (2020). An integrated physical and cost-benefit approach to assess groins as a coastal erosion mitigation strategy. Coastal Engineering, 156, 103614. doi:10.1016/j.coastaleng.2019.103614.

Saengsupavanich, C., Rif’atin, H. Q., Magdalena, I., & Ariffin, E. H. (2024). A systematic review of jetty-induced downdrift coastal erosion management. Regional Studies in Marine Science, 74, 103523. doi:10.1016/j.rsma.2024.103523.

Shi, L., Liu, W., Zhou, C., & Cai, Y. (2024). A structure-decomposition approach for dynamic analysis of sheet-pile groins subjected to tidal bores. Ocean Engineering, 299, 117322. doi:10.1016/j.oceaneng.2024.117322.

Shokrian Hajibehzad, M., Shafai Bejestan, M., Ferro, V., & Avarand, R. (2022). Mean flow, secondary currents and bed shear stress at a 180-degree laboratory bend with and without enhanced permeable groins as an Eco-friendly river structure. Journal of Hydro-Environment Research, 44, 12–22. doi:10.1016/j.jher.2022.07.004.

Wu, T., Zhang, Y., Sun, H., Galindo, R., Wu, W., & Cai, Y. (2023). Dynamic response of sheet‒pile groin under tidal bore considering pile‒pile mutual interaction and hydrodynamic pressure. Soil Dynamics and Earthquake Engineering, 164, 107568. doi:10.1016/j.soildyn.2022.107568.

Zhang, R., & Stive, M. J. F. (2019). Numerical modelling of hydrodynamics of permeable pile groins using SWASH. Coastal Engineering, 153, 103558. doi:10.1016/j.coastaleng.2019.103558.

Heikal, E. M., Koraim, A. S., Rafea, A. A., & Elbagory, I. A. (2023). The effect of groins characteristic on sandy beach stability. Egyptian Journal of Aquatic Research, 49(3), 303–312. doi:10.1016/j.ejar.2023.04.005.

Abdel-Mawla, S., & Khaled, M. (2002). Application of Permeable Groins on Tourist Shore Protection. Ocean Wave Measurement and Analysis (2001), 1735–1744. doi:10.1061/40604(273)175.

Longuet-Higgins, M. S. (1970). Longshore currents generated by obliquely incident sea waves: 1. Journal of Geophysical Research, 75(33), 6778–6789. doi:10.1029/jc075i033p06778.

Longuet-Higgins, M. S., & Stewart, R. w. (1964). Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Research and Oceanographic Abstracts, 11(4), 529–562. doi:10.1016/0011-7471(64)90001-4.

Triatmodjo, B. (1999). Coastal Engineering. Penerbit Beta Offset, Yogyakarta, Indonesia. (In Indonesian).

Meilistya, R.R.I., Sugianto, D.N., & Indrayanti. E. (2012). Longshore Current Study Due to the Influence of Wave Transformation in Semarang Waters. Jurnal Oseanografi, 1(2), 128-138.

Komar, P. D., & Inman, D. L. (1970). Longshore sand transport on beaches. Journal of Geophysical Research, 75(30), 5914–5927. doi.10.1029/jc075i030p05914.

Larson, M., & Kraus, N. C. (1991). Numerical Model of Longshore Current for Bar and Trough Beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117(4), 326–347. doi:10.1061/(asce)0733-950x(1991)117:4(326).

Sabatier, F. (2007). U.S. Army Corps of Engineers, Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100. Méditerranée, 108, 146. doi:10.4000/mediterranee.201.

Prandtl, L. (1952). Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjects. Hafner Publishing Company, New York, United States.

Bretschneider, C. L. (1954). Field investigations of wave energy loss in shallow water ocean waves. Beach Erosion Board, Engineer Research and Development Center, Vicksburg, United States.

Miller, R. L. (1968). Experimental determination of run-up of undular and fully developed bores. Journal of Geophysical Research, 73(14), 4497–4510. doi:10.1029/jb073i014p04497.

Raudkivi, A. J. (1996). Permeable Pile Groins. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(6), 267–272. doi:10.1061/(asce)0733-950x(1996)122:6(267).


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-02-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Hasdinar Umar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message