Investigation of an Innovative Technique for R.C. Piles Reinforced by Geo-Synthetics Under Axial Load
Downloads
Doi: 10.28991/CEJ-2024-010-10-011
Full Text: PDF
[2] Iskander, M. G., & Stachula, A. (2002). Wave Equation Analyses of Fiber-Reinforced Polymer Composite Piling. Journal of Composites for Construction, 6(2), 88–96. doi:10.1061/(asce)1090-0268(2002)6:2(88).
[3] Abdel-Karim, A. H., Khalil, G. I., Ewis, A. E., & Makhlouf, M. H. (2023). Impact of developed hybrid polypropylene fiber inclusion on the flexural performance of concrete beams reinforced with innovative hybrid bars. Construction and Building Materials, 409(134113). doi:10.1016/j.conbuildmat.2023.134113.
[4] Sen, R., & Mullins, G. (2007). Application of FRP composites for underwater piles repair. Composites Part B: Engineering, 38(5–6), 751–758. doi:10.1016/j.compositesb.2006.07.011.
[5] Zyka, K., & Mohajerani, A. (2016). Composite piles: A review. Construction and Building Materials, 107, 394–410. doi:10.1016/j.conbuildmat.2016.01.013.
[6] Benmokrane, B., & Ali, A. H. (2019). Review and assessment of various theories for modeling durability of GFRP reinforcement for concrete structures. Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, CRC Press, Boca Raton, United States. doi:10.1201/9780429426506-273.
[7] Ding, L., Seliem, H. M., Rizkalla, S. H., Wu, G., & Wu, Z. (2011). Behavior of concrete piles confined with CFRP grid. ACI Special Publication, 1(275), 189-205.
[8] Fam, A., Pando, M., Filz, G., & Rizkalla, S. (2003). Precast piles for route 40 bridge in Virginia using concrete filled FRP tubes. PCI Journal, 48(3), 32–45. doi:10.15554/pcij.05012003.32.45.
[9] Giraldo, J., & Rayhani, M. T. (2013). Influence of Fiber-Reinforced Polymers on Pile-Soil Interface Strength in Clays. Advances in Civil Engineering Materials, 2(1), 534–550. doi:10.1520/ACEM20120043.
[10] Giraldo, J., & Rayhani, M. T. (2014). Load transfer of hollow Fiber-Reinforced Polymer (FRP) piles in soft clay. Transportation Geotechnics, 1(2), 63–73. doi:10.1016/j.trgeo.2014.03.002.
[11] Gupta, P. K., & Verma, V. K. (2016). Study of concrete-filled unplasticized poly-vinyl chloride tubes in marine environment. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 230(2), 229–240. doi:10.1177/1475090214560448.
[12] Hadi, M. N. S., & Youssef, J. (2016). Experimental Investigation of GFRP-Reinforced and GFRP-Encased Square Concrete Specimens under Axial and Eccentric Load, and Four-Point Bending Test. Journal of Composites for Construction, 20(5), 04013017–1. doi:10.1061/(asce)cc.1943-5614.0000675.
[13] Iskander, M. G., & Hassan, M. (1998). State of the Practice Review in FRP Composite Piling. Journal of Composites for Construction, 2(3), 116–120. doi:10.1061/(asce)1090-0268(1998)2:3(116).
[14] Suleiman, M. T., Ni, L., & Raich, A. (2014). Development of Pervious Concrete Pile Ground-Improvement Alternative and Behavior under Vertical Loading. Journal of Geotechnical and Geoenvironmental Engineering, 140(7), 04014035. doi:10.1061/(asce)gt.1943-5606.0001135.
[15] Wang, W., Sheikh, M. N., & Hadi, M. N. S. (2015). Axial compressive behaviour of concrete confined with polymer grid. Materials and Structures, 49(9), 3893–3908. doi:10.1617/s11527-015-0761-9.
[16] Giraldo Velez, J. D. (2013). Experimental study of Hollow Fibre Reinforced Polymer Piles in soft clay. PhD Thesis, Carleton University, Ottawa, Canada.
[17] Guades, E., Aravinthan, T., Islam, M., & Manalo, A. (2012). A review on the driving performance of FRP composite piles. Composite Structures, 94(6), 1932–1942. doi:10.1016/j.compstruct.2012.02.004.
[18] Pando, A. M., Ealy, C.D., Flitz, M. G., Lesko, J. J., & Hoppe, E.J. (2006). A Laboratory and Field Study of Composite Piles for Bridge Substructures. FHWA-HRT04-043, Federal Highway Administration, Washington, United States.
[19] Zhang, H., & Hadi, M. N. S. (2019). Geogrid-confined pervious geopolymer concrete piles with FRP-PVC-confined concrete core: Concept and behaviour. Construction and Building Materials, 211, 12–25. doi:10.1016/j.conbuildmat.2019.03.231.
[20] AlAjarmeh, O. S., Manalo, A. C., Benmokrane, B., Karunasena, W., & Mendis, P. (2019). Axial performance of hollow concrete columns reinforced with GFRP composite bars with different reinforcement ratios. Composite Structures, 213(2), 153–164. doi:10.1016/j.compstruct.2019.01.096.
[21] Pham, T. A., Tran, Q.-A., Villard, P., & Dias, D. (2023). Numerical Analysis of Geosynthetic-Reinforced and Pile-Supported Embankments Considering Integrated Soil-Structure Interactions. Geotechnical and Geological Engineering, 42(1), 185–206. doi:10.1007/s10706-023-02564-9.
[22] Alsirawan, R., Alnmr, A., & Koch, E. (2023). Experimental and Numerical Investigation of Geosynthetic-Reinforced Pile-Supported Embankments for Loose Sandy Soils. Buildings, 13(9). doi:10.3390/buildings13092179.
[23] Alsirawan, R., Koch, E., & Alnmr, A. (2023). Proposed Method for the Design of Geosynthetic-Reinforced Pile-Supported (GRPS) Embankments. Sustainability, 15(7), 6196. doi:10.3390/su15076196.
[24] Alnmr, A., & Alsirawan, R. (2024). Numerical Study of the Effect of the Shape and Area of Shallow Foundations on the Bearing Capacity of Sandy Soils. Acta Polytechnica Hungarica, 21(1), 103–120. doi:10.12700/APH.21.1.2024.1.7.
[25] Pham, T. A. (2020). Analysis of geosynthetic-reinforced pile-supported embankment with soil-structure interaction models. Computers and Geotechnics, 121, 103438. doi:10.1016/j.compgeo.2020.103438.
[26] ACI 318M-11. (2011). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Michigan, United States.
[27] Vignjevic, R., Djordjevic, N., Vuyst, T. De, & Gemkow, S. (2018). Modelling of strain softening materials based on equivalent damage force. Computer Methods in Applied Mechanics and Engineering, 335(12), 52–68. doi:10.1016/j.cma.2018.01.049.
[28] ABAQUS. (2013). Abaqus Documentation User's Guide. Dassault Systèmes, Vélizy-Villacoublay, France.
[29] Zainal, S. M. I. S., Hejazi, F., Aziz, F. N. A. Abd., & Jaafar, M. S. (2020). Constitutive Modeling of New Synthetic Hybrid Fibers Reinforced Concrete from Experimental Testing in Uniaxial Compression and Tension. Crystals, 10(10), 885. doi:10.3390/cryst10100885.
[30] Kent, D. C., & Park, R. (1971). Flexural Members with Confined Concrete. Journal of the Structural Division, 97(7), 1969–1990. doi:10.1061/jsdeag.0002957.
[31] ACI 440.1R-15. (2015). Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer (FRP) Bars. American Concrete Institute (ACI), Michigan, United States.
[32] ECP-201. (2012) Egyptian Code of Practice for Calculation of Loads and Forces in Structures and Buildings. National Housing and Building Research Center, Cairo, Egypt.
[33] Hadhood, A., Mohamed, H. M., Ghrib, F., & Benmokrane, B. (2017). Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads. Composites Part B: Engineering, 114(5), 223–236. doi:10.1016/j.compositesb.2017.01.063.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.