Refining Low Strain Pile Integrity Testing for Minor Flaw Detection with Complex Wavelet Transform

Elizaveta Loseva, Ilya Lozovsky, Ruslan Zhostkov

Abstract


The structural integrity of pile foundations is critical for the safety and longevity of buildings and infrastructure. Low strain impact testing is a widely used non-destructive method for assessing pile length and identifying significant defects; however, its sensitivity to minor flaws remains limited. This study aims to enhance the detection capabilities of low strain testing for minor defects by proposing an improved methodology. We conducted field tests on ten piles with small, artificially introduced flaws and complemented these tests with three-dimensional numerical simulations. Initial time-domain analyses of both field and simulated data, using low-frequency wave excitation, did not reveal distinct signal features indicative of defects. To address this limitation, we employed a set of hammers with varying weights and head materials for wave excitation, simulated with different input force pulse durations. We further applied Complex Continuous Wavelet Transform (CCWT) for time-frequency analysis of the acquired signals, which effectively identified minor defects through characteristic changes in wavelet coefficient phase angles at expected timestamps. The consistency of CCWT phase spectrum features across signals from different hammers, considering the varying sensitivities of wave excitations, facilitates the differentiation of genuine flaw-induced phase shifts from noise. The study's findings were integrated into an improved low strain pile integrity testing workflow, enhancing the method's accuracy in detecting minor flaws.

 

Doi: 10.28991/CEJ-2024-010-10-05

Full Text: PDF


Keywords


Piles; Cast-in-Place Piles; Non-destructive Testing; NDT; Pile Integrity Testing; Low Strain Integrity Testing; Numerical Simulations; Wavelet Analysis; Continuous Wavelet Transform; Morlet Wavelet.

References


Fleming, K., Weltman, A., Randolph, M., & Elson, K. (2008). Piling Engineering. CRC Press, Boca Raton, United States. doi:10.1201/b22272.

Shammazov, I. A., Batyrov, A. M., Sidorkin, D. I., & Van Nguyen, T. (2023). Study of the Effect of Cutting Frozen Soils on the Supports of Above-Ground Trunk Pipelines. Applied Sciences (Switzerland), 13(5), 3139. doi:10.3390/app13053139.

Lavrik, A., Buslaev, G., & Dvoinikov, M. (2023). Thermal Stabilization of Permafrost Using Thermal Coils inside Foundation Piles. Civil Engineering Journal (Iran), 9(4), 927–938. doi:10.28991/CEJ-2023-09-04-013.

Syas’ko, V., & Shikhov, A. (2022). Assessing the State of Structural Foundations in Permafrost Regions by Means of Acoustic Testing. Applied Sciences (Switzerland), 12(5), 2364. doi:10.3390/app12052364.

Blinov, P. A., Shansherov, A. V., Cheremshantsev, D. M., Kuznetsova, N. Y., & Nikishin, V. V. (2022). Analysis and Selection of a Grouting Mixture, Resistant to Dynamic Loads, in Order to Improve the Support Tightness Quality in the Annulus. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 333(11), 115–123. doi:10.18799/24131830/2022/11/3726.

Dvoynikov, M. V., Nikitin, V. I., & Kopteva, A. I. (2024). Analysis of Methodology for Selecting Rheological Model of Cement Slurry for Determining Technological Parameters of Well Casing. International Journal of Engineering, Transactions B: Applications, 37(10), 2042–2050. doi:10.5829/ije.2024.37.10a.15.

Petrakov, D. G., Loseva, A. V., Jafarpour, H., & Penkov, G. M. (2024). Experimental Evaluation of Effective Chemical Composition on Reservoir Quality of Bottomhole Zone of Low Permeability Terrigenous Reservoirs. International Journal of Engineering, Transactions B: Applications, 37(8), 1547–1555. doi:10.5829/IJE.2024.37.08B.08.

Kuzmin, A. M., Buslaev, G. V., Morenov, V. A., Tseneva, S. N., & Gavrilov, N. (2022). Improving the energy-efficiency of small-scale methanol production through the use of microturboexpander units. Journal of Mining Institute, 258, 1038–1049. doi:10.31897/PMI.2022.104.

Amir, J. M. (2017). Pile integrity testing: history, present situation and future agenda. The 3rd International Conference on Deep Foundations, 27-29 April, Santa Cruz de la Sierra, Bolivia.

Gao, T. (2022). A Critical Analysis of Existing Intelligent Analytical Techniques for Pile Integrity Test. 2022 8th International Conference on Hydraulic and Civil Engineering: Deep Space Intelligent Development and Utilization Forum (ICHCE), 740–751. doi:10.1109/ichce57331.2022.10042772.

Amir, J. M. (2020). Pile integrity testing: all about the methods of pile NDT (2nd Ed.). Piletest.com, Hemel Hempstead, United Kingdom.

ASTM D582-16. (2016). Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations. ASTM International, Pennsylvania, United States. doi:10.1520/d5882-16.

Sarhan, H. A., O’Neill, M. W., & Tabsh, S. W. (2004). Structural capacity reduction for drilled shafts with minor flaws. Structural Journal, 101(3), 291-297. doi:10.14359/13088.

Iskander, M., Roy, D., Kelley, S., & Ealy, C. (2003). Drilled Shaft Defects: Detection, and Effects on Capacity in Varved Clay. Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1128–1137. doi:10.1061/(asce)1090-0241(2003)129:12(1128).

Debnath, L., & Bhatta, D. (2014). Integral Transforms and Their Applications. Chapman and Hall/CRC, New York, United States. doi:10.1201/b17670.

Debnath, L., & Shah, F. A. (2015). Brief Historical Introduction. Wavelet Transforms and Their Applications. Birkhäuser, Boston, United States. doi:10.1007/978-0-8176-8418-1_1.

Sejdić, E., Djurović, I., & Jiang, J. (2009). Time–frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1), 153–183. doi:10.1016/j.dsp.2007.12.004.

Grossmann, A., & Morlet, J. (2009). Decomposmon of hardy functions into square integrable wavelets of constant shape. Fundamental Papers in Wavelet Theory, 15(4), 126–139. doi:10.1515/9781400827268.126.

Ali, A., Sheng-Chang, C., & Shah, M. (2020). Continuous wavelet transformation of seismic data for feature extraction. SN Applied Sciences, 2(11), 1-12. doi:10.1007/s42452-020-03618-w.

Palupi, I. R. (2018, April). Depth prediction of gravity data by using continous wavelet transform. EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering, European Association of Geoscientists & Engineers, 1-4.

Deleersnyder, W., Hermans, T., & Dudal, D. (2024). An efficient workflow for airborne electromagnetic data processing for advanced applications. Copernicus Meetings: No. EGU24-16111. doi:10.5194/egusphere-egu24-16111.

Chatterjee, P. (2018). Wavelet Analysis in Civil Engineering. CRC Press, London, United Kingdom. doi:10.1201/b18057.

Saadatmorad, M., Khatir, S., Cuong-Le, T., Benaissa, B., & Mahmoudi, S. (2024). Detecting damages in metallic beam structures using a novel wavelet selection criterion. Journal of Sound and Vibration, 578, 118297. doi:10.1016/j.jsv.2024.118297.

Thoriya, A., Vora, T., Jadeja, R., Ali Abdelrahman Ali, Y., & Patel, S. K. (2024). Application of wavelet transform techniques for corrosion assessment of embedded rebars in RC elements using electromechanical impedance. Measurement: Journal of the International Measurement Confederation, 226, 114081. doi:10.1016/j.measurement.2023.114081.

Addison, P. S., & Watson, J. N. (1997). Wavelet analysis for low strain integrity testing of foundation piles. 5th International conference on inspection, appraisal, repairs, maintenance of buildings and structures, 15-16 May, 1997, Singapore.

Watson, J. N., Addison, P. S., & Sibbald, A. (1999). De-noising of sonic echo test data through wavelet transform reconstruction. Shock and Vibration, 6(5), 267–272. doi:10.1155/1999/175750.

Wang, J. (2003). Wavelet analyses for stress wave detection of piles. Science in China Series E, 46(2), 113. doi:10.1360/03ye9011.

Ni, S. H., Isenhower, W. M., & Huang, Y. H. (2012). Continuous wavelet transform technique for low-strain integrity testing of deep drilled shafts. Journal of GeoEngineering, 7(3), 97–105. doi:10.6310/jog.2012.7(3).3.

Ni, S. H., Yang, Y. Z., Tsai, P. H., & Chou, W. H. (2017). Evaluation of pile defects using complex continuous wavelet transform analysis. NDT and E International, 87, 50–59. doi:10.1016/j.ndteint.2017.01.007.

Ni, S. H., Yanga, Y. Z., & Lyu, C. R. (2017). Application of wavelet transform for the impulse response of pile. Smart Structures and Systems, 19(5), 513–521. doi:10.12989/sss.2017.19.5.513.

Ni, S. H., Li, J. L., Yang, Y. Z., & Lai, Y. Y. (2019). Applicability of complex wavelet transform to evaluate the integrity of commonly used pile types. Journal of GeoEngineering, 14(1), 21–30. doi:10.6310/jog.201903_14(1).3.

Zheng, W., Zheng, W., Wang, S., Lin, C., Yu, X., & Liu, J. (2020). Damage Localization of Piles Based on Complex Continuous Wavelet Transform: Numerical Example and Experimental Verification. Shock and Vibration, 2020, 1–9. doi:10.1155/2020/8058640.

Liu, J. L., Lin, C. X., Ye, X. J., Zheng, W. T., & Luo, Y. P. (2021). An improved algorithm for pile damage localization based on complex continuous wavelet transform. Smart Structures and Systems, 27(3), 493–506. doi:10.12989/sss.2021.27.3.493.

Churkin, A. A., Ulybin, A. V., & Kapustin, V. V. (2021). Application of low strain impact testing to spliced driven piles quality control. Stroitel'stvo Unikal'nyh Zdanij i Sooruzenij, (3), 1-14.

Loseva, E., Lozovsky, I., Zhostkov, R., & Syasko, V. (2022). Wavelet Analysis for Evaluating the Length of Precast Spliced Piles Using Low Strain Integrity Testing. Applied Sciences (Switzerland), 12(21), 10901. doi:10.3390/app122110901.

Ponomaryov, A. B., Zakharov, A. V., Tatyannikov, D. A., & Shalamova, E. A. (2023). Geotechnical Monitoring in the Urban Construction Environment. Soil Mechanics and Foundation Engineering, 60(5), 452–458. doi:10.1007/s11204-023-09914-y.

Zakharov, A. V., Ponomaryov, A. B., & Ofrikhter, I. V. (2022). Model of soil thermal conductivity in the form of a truncated sphere. Magazine of Civil Engineering, 114(6), 11403. doi:10.34910/MCE.114.3.

Loseva, E., Lozovsky, I., & Zhostkov, R. (2022). Identifying Small Defects in Cast-in-Place Piles Using Low Strain Integrity Testing. Indian Geotechnical Journal, 52(2), 270–279. doi:10.1007/s40098-021-00583-y.

Vinogradova, A., Gogolinskii, K., Umanskii, A., Alekhnovich, V., Tarasova, A., & Melnikova, A. (2022). Method of the Mechanical Properties Evaluation of Polyethylene Gas Pipelines with Portable Hardness Testers. Inventions, 7(4), 125. doi:10.3390/inventions7040125.

Schipachev, A. M., & Aljadly, M. (2023). Magnetic-Pulsed Treatment to Improve the Strength Properties of Defective Sections of Oil and Gas Pipelines. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 334(5), 7–16. doi:10.18799/24131830/2023/5/4011.

Alekhnovich, V., Syasko, V., & Umanskii, A. (2024). Multi-Parameter Complex Control of Metal Coatings on Ball Plugs of Pipeline Shut-Off Valves. Inventions, 9(4), 78. doi:10.3390/inventions9040078.

Chai, H.-Y., & Phoon, K.-K. (2013). Detection of Shallow Anomalies in Pile Integrity Testing. International Journal of Geomechanics, 13(5), 672–677. doi:10.1061/(asce)gm.1943-5622.0000233.

Zhostkov, R.A. (2019). A Software for Simulation of Low Integrity Testing for Cast-in-Place Piles. Patent RF. 2019.665449.

Lozovsky, I. N., Zhostkov, R. A., & Churkin, A. A. (2020). Numerical Simulation of Ultrasonic Pile Integrity Testing. Russian Journal of Nondestructive Testing, 56(1), 1–11. doi:10.1134/S1061830920010064.

Warburton, G. B. (1995). Dynamics of structures, by Ray W. Clough and Joseph Penzien, 2nd edition, McGraw-Hill, New York, United Sttaes. Earthquake Engineering & Structural Dynamics, 24(3), 457–462. doi:10.1002/eqe.4290240311.

Stojić, D., Nestorović, T., Marković, N., & Marjanović, M. (2018). Experimental and numerical research on damage localization in plate-like concrete structures using hybrid approach. Structural Control and Health Monitoring, 25(9), 2214. doi:10.1002/stc.2214.

Lide, D. R. (2004). CRC handbook of chemistry and physics. CRC Press, London, United Kingdom.

Briaud, J. L. (2023). Geotechnical engineering: unsaturated and saturated soils. John Wiley & Sons, Hoboken, United States.

Vasilyeva, N. V., Boikov, A. V., Erokhina, O. O., & Trifonov, A. Y. (2021). Automated digitization of radial charts. Journal of Mining Institute, 247(1), 82–87. doi:10.31897/PMI.2021.1.9.

Belyakov, N., Smirnova, O., Alekseev, A., & Tan, H. (2021). Numerical simulation of the mechanical behavior of fiber-reinforced cement composites subjected dynamic loading. Applied Sciences (Switzerland), 11(3), 1–15. doi:10.3390/app11031112.

Basalaeva, P. B., & Kuranov, A. D. (2024). Influence of dip angle of lithologically non-uniform interburden on horizontal mine opening stability during driving. Mining Informational and Analytical Bulletin, (3), 17–30. doi:10.25018/0236_1493_2024_3_0_17.

Liu, X., Hesham EI Naggar, M., Wang, K., & Wu, W. (2020). Theoretical analysis of three-dimensional effect in pile integrity test. Computers and Geotechnics, 127, 103765. doi:10.1016/j.compgeo.2020.103765.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Elizaveta Loseva, Ilya Lozovsky, Ruslan Zhostkov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message