Managing Green and Sustainable Technologies: Climate-Informed Corrosion Prediction for Steel Structures
Downloads
Doi: 10.28991/CEJ-2024-010-08-016
Full Text: PDF
[2] Guo, S., Si, R., Dai, Q., You, Z., Ma, Y., & Wang, J. (2019). A critical review of corrosion development and rust removal techniques on the structural/environmental performance of corroded steel bridges. Journal of Cleaner Production, 233(1), 126–146. doi:10.1016/j.jclepro.2019.06.023.
[3] Di Sarno, L., Majidian, A., & Karagiannakis, G. (2021). The effect of atmospheric corrosion on steel structures: A state-of-the-art and case-study. Buildings, 11(12), 571. doi:10.3390/buildings11120571.
[4] Vanem, E. (2013). Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height. Ocean Engineering & Oceanography. Springer Berlin, Germany. doi:10.1007/978-3-642-30253-4.
[5] Stott, P. (2016). How climate change affects extreme weather events: Research can increasingly determine the contribution of climate change to extreme events such as droughts. Science, 352(6293), 1517–1518. doi:10.1126/science.aaf7271.
[6] Reguero, B. G., Losada, I. J., & Méndez, F. J. (2019). A recent increase in global wave power as a consequence of oceanic warming. Nature Communications, 10(1), 205. doi:10.1038/s41467-018-08066-0.
[7] Williams, P. D., Cullen, M. J. P., Davey, M. K., & Huthnance, J. M. (2013). Mathematics applied to the climate system: Outstanding challenges and recent progress. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1991), 20120518. doi:10.1098/rsta.2012.0518.
[8] McPherson, R. (2016). Impacts of climate change on flows in the Red River Basin. Final Report to the South-Central Climate Science Center, Norman, United States.
[9] Khandel, O., & Soliman, M. (2021). Integrated Framework for Assessment of Time-Variant Flood Fragility of Bridges Using Deep Learning Neural Networks. Journal of Infrastructure Systems, 27(1), 4020045. doi:10.1061/(asce)is.1943-555x.0000587.
[10] Khandel, O., & Soliman, M. (2019). Integrated Framework for Quantifying the Effect of Climate Change on the Risk of Bridge Failure Due to Floods and Flood-Induced Scour. Journal of Bridge Engineering, 24(9), 4019090. doi:10.1061/(asce)be.1943-5592.0001473.
[11] Boone, A. A., Xue, Y., De Sales, F., Comer, R. E., Hagos, S., Mahanama, S., Schiro, K., Song, G., Wang, G., Li, S., & Mechoso, C. R. (2016). The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Climate Dynamics, 47(11), 3547–3573. doi:10.1007/s00382-016-3252-y.
[12] Shaw, W. J., & Andersson, J. I. (2010). Atmospheric corrosion of carbon steel in the prairie regions. NACE Northern Area Western Conference, 14-18 March, 2010, San Antonio, United States.
[13] National Centers for Environmental Information (NOAA). (2023). State of the Climate: Global Climate Report for 2022. National Centers for Environmental Information (NOAA), Asheville, United States.
[14] Yang, J., Zhao, L., & Oleson, K. (2023). Large humidity effects on urban heat exposure and cooling challenges under climate change. Environmental Research Letters, 18(4), 44024. doi:10.1088/1748-9326/acc475.
[15] LeBozec, N., Jönsson, M., & Thierry, D. (2004). Atmospheric corrosion of magnesium alloys: Influence of temperature, relative humidity, and chloride deposition. Corrosion, 60(4), 356–361. doi:10.5006/1.3287743.
[16] Shinohara, T., Motoda, S., & Oshikawa, W. (2005). Evaluation of Corrosivity in Atmospheric Environment by ACM (Atmospheric Corrosion Monitor) Type Corrosion Sensor. Materials Science Forum, 475–479, 61–64. doi:10.4028/www.scientific.net/msf.475-479.61.
[17] Samie, F., Tidblad, J., Kucera, V., & Leygraf, C. (2007). Atmospheric corrosion effects of HNO3-Influence of temperature and relative humidity on laboratory-exposed copper. Atmospheric Environment, 41(7), 1374–1382. doi:10.1016/j.atmosenv.2006.10.018.
[18] Wang, X., Li, X., & Tian, X. (2015). Influence of temperature and relative humidity on the atmospheric corrosion of zinc in field exposures and laboratory environments by atmospheric corrosion monitor. International Journal of Electrochemical Science, 10(10), 8361–8373. doi:10.1016/s1452-3981(23)11102-3.
[19] Nguyen, M. N., Leicester, R. H., Wang, C. H., & Foliente, G. C. (2013). Corrosion effects in the structural design of metal fasteners for timber construction. Structure and Infrastructure Engineering, 9(3), 275–284. doi:10.1080/15732479.2010.546416.
[20] Zhang, Y., Ayyub, B. M., & Fung, J. F. (2022). Projections of corrosion and deterioration of infrastructure in United States coasts under a changing climate. Resilient Cities and Structures, 1(1), 98–109. doi:10.1016/j.rcns.2022.04.004.
[21] Xu, M., & Yang, C. (2023). Mapping the chloride-induced corrosion damage risks for bridge decks under climate change. Structure and Infrastructure Engineering, 19(1), 1–17. doi:10.1080/15732479.2023.2236599.
[22] Soliman, M., & Frangopol, D. M. (2015). Life-Cycle Cost Evaluation of Conventional and Corrosion-Resistant Steel for Bridges. Journal of Bridge Engineering, 20(1). doi:10.1061/(asce)be.1943-5592.0000647.
[23] Abtahi, S., Liu, Z., & Li, Y. (2023). Corrosion-related parameter estimation for RC structures using UKF-based Bayesian nonlinear finite element model updating with seismic data. Mechanical Systems and Signal Processing, 191, 110169. doi:10.1016/j.ymssp.2023.110169.
[24] Wu, Y. (2024). Machine learning-based predictive modeling for sustainable pervious concrete pavement design in the context of climate change mitigation. Master Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.
[25] Bastidas-Arteaga, E. (2018). Reliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate Change. International Journal of Concrete Structures and Materials, 12(1), 10. doi:10.1186/s40069-018-0235-x.
[26] Wang, X., Stewart, M. G., & Nguyen, M. (2012). Impact of climate change on corrosion and damage to concrete infrastructure in Australia. Climatic Change, 110(3–4), 941–957. doi:10.1007/s10584-011-0124-7.
[27] Stewart, M. G., Wang, X., & Nguyen, M. N. (2011). Climate change impact and risks of concrete infrastructure deterioration. Engineering Structures, 33(4), 1326–1337. doi:10.1016/j.engstruct.2011.01.010.
[28] Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2013 – The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/cbo9781107415324.
[29] The Intergovernmental Panel on Climate Change (IPCC). (2007). Climate Change 2007: The Physical Science Basis. The Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, United Kingdom.
[30] Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213–241. doi:10.1007/s10584-011-0156-z.
[31] Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. doi:10.1175/BAMS-D-11-00094.1.
[32] Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1107. doi:10.1175/2009BAMS2607.1.
[33] Benarie, M., & Lipfert, F. L. (1986). A general corrosion function in terms of atmospheric pollutant concentrations and rain pH. Atmospheric Environment (1967), 20(10), 1947–1958. doi:10.1016/0004-6981(86)90336-7.
[34] Feliu, S., Morcillo, M., & Feliu, S. (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters-II. Long-term forecasts. Corrosion Science, 34(3), 415–422. doi:10.1016/0010-938X(93)90113-U.
[35] Feliu, S., Morcillo, M., & Feliu, S. (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters-I. Annual corrosion. Corrosion Science, 34(3), 403–414. doi:10.1016/0010-938X(93)90112-T.
[36] de la Fuente, D., Castaño, J. G., & Morcillo, M. (2007). Long-term atmospheric corrosion of zinc. Corrosion Science, 49(3), 1420–1436. doi:10.1016/j.corsci.2006.08.003.
[37] Cai, Y., Zhao, Y., Ma, X., Zhou, K., & Chen, Y. (2018). Influence of environmental factors on atmospheric corrosion in dynamic environment. Corrosion Science, 137, 163–175. doi:10.1016/j.corsci.2018.03.042.
[38] Pei, Z., Cheng, X., Yang, X., Li, Q., Xia, C., Zhang, D., & Li, X. (2021). Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. Journal of Materials Science and Technology, 64(1), 214–221. doi:10.1016/j.jmst.2020.01.023.
[39] de la Fuente, D., Díaz, I., Simancas, J., Chico, B., & Morcillo, M. (2011). Long-term atmospheric corrosion of mild steel. Corrosion Science, 53(2), 604–617. doi:10.1016/j.corsci.2010.10.007.
[40] Enevoldsen, J. N., Hansson, C. M., & Hope, B. B. (1994). The influence of internal relative humidity on the rate of corrosion of steel embedded in concrete and mortar. Cement and Concrete Research, 24(7), 1373–1382. doi:10.1016/0008-8846(94)90122-8.
[41] Schindelholz, E., Risteen, B. E., & Kelly, R. G. (2014). Effect of Relative Humidity on Corrosion of Steel under Sea Salt Aerosol Proxies. Journal of The Electrochemical Society, 161(10), C450–C459. doi:10.1149/2.0221410jes.
[42] Alcántara, J., de la Fuente, D., Chico, B., Simancas, J., Díaz, I., & Morcillo, M. (2017). Marine atmospheric corrosion of carbon steel: A review. Materials, 10(4), 406. doi:10.3390/ma10040406.
[43] Castañeda, A., Valdés, C., & Corvo, F. (2018). Atmospheric corrosion study in a harbor located in a tropical island. Materials and Corrosion, 69(10), 1462–1477. doi:10.1002/maco.201810161.
[44] Guo, L., Street, S. R., Mohammed-Ali, H. B., Ghahari, M., Mi, N., Glanvill, S., Du Plessis, A., Reinhard, C., Rayment, T., & Davenport, A. J. (2019). The effect of relative humidity change on atmospheric pitting corrosion of stainless steel 304L. Corrosion Science, 150(6), 110–120. doi:10.1016/j.corsci.2019.01.033.
[45] Liu, Y., Liu, M., Lu, X., & Wang, Z. (2022). Effect of temperature and ultraviolet radiation on corrosion behavior of carbon steel in high humidity tropical marine atmosphere. Materials Chemistry and Physics, 277(1), 124962. doi:10.1016/j.matchemphys.2021.124962.
[46] Stefanoni, M., Angst, U., & Elsener, B. (2018). Corrosion rate of carbon steel in carbonated concrete – A critical review. Cement and Concrete Research, 103(1), 35–48. doi:10.1016/j.cemconres.2017.10.007.
[47] Gu, X.-L., Dong, Z., Yuan, Q., & Zhang, W.-P. (2020). Corrosion of Stirrups under Different Relative Humidity Conditions in Concrete Exposed to Chloride Environment. Journal of Materials in Civil Engineering, 32(1), 4019329. doi:10.1061/(asce)mt.1943-5533.0003001.
[48] Pacheco, A. M. G., & Ferreira, M. G. S. (1994). An investigation of the dependence of atmospheric corrosion rate on temperature using printed-circuit iron cells. Corrosion Science, 36(5), 797–813. doi:10.1016/0010-938X(94)90171-6.
[49] Almarshad, A. I., & Syed, S. (2008). Atmospheric corrosion of galvanized steel and aluminium in marine and marine-industrial environments of Saudi Arabia. Materials and Corrosion, 59(1), 46–51. doi:10.1002/maco.200704075.
[50] Cole, I. S., & Paterson, D. A. (2010). Possible effects of climate change on atmospheric corrosion in Australia. Corrosion Engineering Science and Technology, 45(1), 19–26. doi:10.1179/147842209X12579401586483.
[51] Alcántara, J., Chico, B., Díaz, I., de la Fuente, D., & Morcillo, M. (2015). Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corrosion Science, 97, 74–88. doi:10.1016/j.corsci.2015.04.015.
[52] McKay, W. A., Garland, J. A., Livesley, D., Halliwell, C. M., & Walker, M. I. (1994). The characteristics of the shore-line sea spray aerosol and the landward transfer of radionuclides discharged to coastal sea water. Atmospheric Environment, 28(20), 3299–3309. doi:10.1016/1352-2310(94)00156-F.
[53] Cole, I. S., Ganther, W. D., Paterson, D. A., King, G. A., Furman, S. A., & Lau, D. (2003). Holistic model for atmospheric corrosion Part 2 - Experimental measurement of deposition of marine salts in a number of long-range studies. Corrosion Engineering Science and Technology, 38(4), 259–266. doi:10.1179/147842203225008886.
[54] Cole, I., & Corrigan, P. (2009). Service life prediction of materials. Technology, design and process innovation in the built environment, Spon Press, London, United Kingdom.
[55] WorldClim. (2024). Downscaling Future and Past Climate Data from GCMs. WorldClim. Available online: https://www.worldclim.org/data/downscaling.html (accessed on July 2024).
[56] Iannuzzi, M., & Frankel, G. S. (2022). The carbon footprint of steel corrosion. NPJ Materials Degradation, 6(1), 101. doi:10.1038/s41529-022-00318-1.
[57] Ozkan, I. F., Ebrahimi, N., Zhang, J., Markovinovic, D., & Shirkhani, H. (2023). Atmospheric Corrosion of Steel Infrastructure in Canada Under Climate Change. Corrosion, 79(9), 1064–1078. doi:10.5006/4296.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.