Evaluation of an Outdoor Pilot Scale Hybrid Growth Algal-Bacterial System for Wastewater Bioremediation
Downloads
Doi: 10.28991/CEJ-2024-010-11-09
Full Text: PDF
Downloads
[2] Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752. doi:10.1016/j.scitotenv.2020.142168.
[3] Mathew, M. M., Khatana, K., Vats, V., Dhanker, R., Kumar, R., Dahms, H. U., & Hwang, J. S. (2022). Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants”A Review. Frontiers in Microbiology, 12(February). doi:10.3389/fmicb.2021.801051.
[4] Ali, S. S., Hassan, L. H. S., & El-Sheekh, M. (2024). Microalgae-mediated bioremediation: current trends and opportunities-a review. Archives of Microbiology, 206(8), 343. doi:10.1007/s00203-024-04052-x.
[5] Wollmann, F., Dietze, S., Ackermann, J. U., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871. doi:10.1002/elsc.201900071.
[6] Silva-Gálvez, A. L., López-Sánchez, A., Camargo-Valero, M. A., Prosenc, F., González-López, M. E., & Gradilla-Hernández, M. S. (2024). Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies. Journal of Environmental Management, 354, 120258. doi:10.1016/j.jenvman.2024.120258.
[7] Plöhn, M., Spain, O., Sirin, S., Silva, M., Escudero-Oñate, C., Ferrando-Climent, L., Allahverdiyeva, Y., & Funk, C. (2021). Wastewater treatment by microalgae. Physiologia Plantarum, 173(2), 568–578. doi:10.1111/ppl.13427.
[8] Ejike David Ugwuanyi, Zamathula Queen Sikhakhane Nwokediegwu, Michael Ayorinde Dada, Michael Tega Majemite, & Alexander Obaigbena. (2024). The role of algae-based wastewater treatment systems: A comprehensive review. World Journal of Advanced Research and Reviews, 21(2), 937–949. doi:10.30574/wjarr.2024.21.2.0521.
[9] Al Ketife, A. M. D., Almomani, F., EL-Naas, M., & Judd, S. (2019). A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf. Process Safety and Environmental Protection, 127, 90–102. doi:10.1016/j.psep.2019.05.003.
[10] Paddock, M. B. (2019). Microalgae Wastewater Treatment: a Brief History. Preprints, 1(19), 1–25. doi:10.20944/preprints201912.0377.v1.
[11] Ahmad, I., Abdullah, N., Koji, I., Yuzir, A., & Mohamad, S. E. (2021). Potential of microalgae in bioremediation of wastewater. Bulletin of Chemical Reaction Engineering and Catalysis, 16(2), 413–429. doi:10.9767/bcrec.16.2.10616.413-429.
[12] Oruganti, R. K., Katam, K., Show, P. L., Gadhamshetty, V., Upadhyayula, V. K. K., & Bhattacharyya, D. (2022). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 13(4), 10412–10453. doi:10.1080/21655979.2022.2056823.
[13] Oviedo, J. A., Muñoz, R., Donoso-Bravo, A., Bernard, O., Casagli, F., & Jeison, D. (2022). A half-century of research on microalgae-bacteria for wastewater treatment. Algal Research, 67, 102828. doi:10.1016/j.algal.2022.102828.
[14] Abdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S. H., Elsamahy, T., Li, S., El-Sheekh, M. M., Schagerl, M., Kornaros, M., & Sun, J. (2023). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 13, 100205. doi:10.1016/j.ese.2022.100205.
[15] Oberholster, P. J., Schoeman, Y., & Botha, A. M. (2024). Is Africa Ready to Use Phycoremediation to Treat Domestic Wastewater as an Alternative Natural Base Solution? A Case Study. Phycology, 4(1), 153–167. doi:10.3390/phycology4010009.
[16] Kong, W., Kong, J., Feng, S., Yang, T. T., Xu, L., Shen, B., Bi, Y., & Lyu, H. (2024). Cultivation of microalgae–bacteria consortium by waste gas–waste water to achieve CO2 fixation, wastewater purification and bioproducts production. Biotechnology for Biofuels and Bioproducts, 17(1), 26. doi:10.1186/s13068-023-02409-w.
[17] Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2013). Treatment efficacy of algae-based sewage treatment plants. Environmental Monitoring and Assessment, 185(9), 7145–7164. doi:10.1007/s10661-013-3090-x.
[18] Tricolici, O., Bumbac, C., & Postolache, C. (2014). Microalgae-bacteria system for biological wastewater treatment. Journal of Environmental Protection and Ecology, 15(1), 268–276.
[19] Khaldi, H., Maatoug, M., Dube, C. S., Ncube, M., Tandlich, R., Heilmeier, H., Laubscher, R. K., & Dellal, A. (2017). Efficiency of wastewater treatment by a mixture of sludge and microalgae. Journal of Fundamental and Applied Sciences, 9(3), 1454. doi:10.4314/jfas.v9i3.13.
[20] Lee, S. A., Lee, N., Oh, H. M., & Ahn, C. Y. (2019). Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge. Journal of Microbiology and Biotechnology, 29(9), 1434–1443. doi:10.4014/jmb.1905.05034.
[21] Moondra, N., Jariwala, N. D., & Christian, R. A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22(14), 1480–1486. doi:10.1080/15226514.2020.1782829.
[22] Mao, Y., Xiong, R., Gao, X., Jiang, L., Peng, Y., & Xue, Y. (2021). Analysis of the status and improvement of microalgal phosphorus removal from municipal wastewater. Processes, 9(9). doi:10.3390/pr9091486.
[23] Nguyen, L. N., Aditya, L., Vu, H. P., Johir, A. H., Bennar, L., Ralph, P., Hoang, N. B., Zdarta, J., & Nghiem, L. D. (2022). Nutrient Removal by Algae-Based Wastewater Treatment. Current Pollution Reports, 8(4), 369–383. doi:10.1007/s40726-022-00230-x.
[24] Gururani, P., Bhatnagar, P., Kumar, V., Vlaskin, M. S., & Grigorenko, A. V. (2022). Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water (Switzerland), 14(22), 3784. doi:10.3390/w14223784.
[25] Boonchai, R., Seo, G. T., Park, D. R., & Seong, C. Y. (2012). Microalgae Photobioreactor for Nitrogen and Phosphorus Removal from Wastewater of Sewage Treatment Plant. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), 407–410. doi:10.7763/ijbbb.2012.v2.143.
[26] Etisa, D. (2018). Some Application of Microalgae in Sewage Treatment, there Availability and Sampling Protocol up to Conservation with Factor Encounter. Advances in Oceanography & Marine Biology, 1(1), 1–5. doi:10.33552/aomb.2018.01.000502.
[27] Alazaiza, M. Y. D., He, S., Su, D., Abu Amr, S. S., Toh, P. Y., & Bashir, M. J. K. (2023). Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. Separations, 10(4). doi:10.3390/separations10040229.
[28] Roychoudhury, H. (2020). Bioremediation of Wastewater – Effect of Algae in Bioremediation of Nitrate and Phosphate Content in Wastewater. International Journal of High School Research, 2(2), 1–3. doi:10.36838/v2i2.1.
[29] Choi, H. J., & Lee, S. M. (2012). Effects of microalgae on the removal of nutrients from wastewater: Various concentrations of Chlorella vulgaris. Environmental Engineering Research, 17(S1), 3–8. doi:10.4491/eer.2012.17.S1.S3.
[30] Suresh Kumar, K., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae - A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. doi:10.1016/j.ecoenv.2014.12.019.
[31] Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in Applied Microbiology, 75(4), 701–717. doi:10.1111/lam.13564.
[32] Spain, O., Plöhn, M., & Funk, C. (2021). The cell wall of green microalgae and its role in heavy metal removal. Physiologia Plantarum, 173(2), 526–535. doi:10.1111/ppl.13405.
[33] Chugh, M., Kumar, L., Shah, M. P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7(July), 100129. doi:10.1016/j.nexus.2022.100129.
[34] Zhao, Y., Ge, Z., Lui, H., & Sun, S. (2016). Ability of different microalgae species in synthetic high-strength wastewater treatment and potential lipid production. Journal of Chemical Technology and Biotechnology, 91(11), 2888–2895. doi:10.1002/jctb.4905.
[35] Encarnaçí£o, T., Palito, C., Pais, A. A. C. C., Valente, A. J. M., & Burrows, H. D. (2020). Removal of pharmaceuticals from water by free and imobilised microalgae. Molecules, 25(16), 3639. doi:10.3390/molecules25163639.
[36] Torres-Franco, A., Passos, F., Figueredo, C., Mota, C., & Muñoz, R. (2021). Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance. Reviews in Environmental Science and Biotechnology, 20(1), 209–235. doi:10.1007/s11157-020-09556-8.
[37] Hwang, J. H., Church, J., Lee, S. J., Park, J., & Lee, W. H. (2016). Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11), 882–897. doi:10.1089/ees.2016.0132.
[38] Uggetti, E., García, J., ílvarez, J. A., & García-Galán, M. J. (2018). Start-up of a microalgae-based treatment system within the biorefinery concept: From wastewater to bioproducts. Water Science and Technology, 78(1), 114–124. doi:10.2166/wst.2018.195.
[39] Marella, T. K., López-Pacheco, I. Y., Parra-Saldívar, R., Dixit, S., & Tiwari, A. (2020). Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Science of the Total Environment, 724. doi:10.1016/j.scitotenv.2020.137960.
[40] Al-Jabri, H., Das, P., Khan, S., Thaher, M., & Abdulquadir, M. (2021). Treatment of wastewaters by microalgae and the potential applications of the produced biomass”a review. Water (Switzerland), 13(1), 27. doi:10.3390/w13010027.
[41] Khan, S., Das, P., Abdul Quadir, M., Thaher, M. I., Mahata, C., Sayadi, S., & Al-Jabri, H. (2023). Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation, 9(3), 281. doi:10.3390/fermentation9030281.
[42] Johnson, D. B., Schideman, L. C., Canam, T., & Hudson, R. J. M. (2018). Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment side stream by algal-bacterial biofilms affixed to rotating contactors. Algal Research, 34, 143–153. doi:10.1016/j.algal.2018.07.009.
[43] Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973–978. doi:10.2166/wst.2008.218.
[44] American Public Health Association (APHA). (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association (APHA), Washington, United States.
[45] Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., & van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends in Biotechnology, 28(7), 371–380. doi:10.1016/j.tibtech.2010.04.004.
[46] Pawlita-Posmyk, M., Wzorek, M., & PЂaczek, M. (2018). The influence of temperature on algal biomass growth for biogas production. MATEC Web of Conferences, 240, 4008. doi:10.1051/matecconf/201824004008.
[47] Kuenen, J. G., Jí¸rgensen, B. B., & Revsbech, N. P. (1986). Oxygen microprofiles of trickling filter biofilms. Water Research, 20(12), 1589–1598. doi:10.1016/0043-1354(86)90125-9.
[48] Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. doi:10.1016/j.watres.2011.03.046.
[49] Peng, J., Kumar, K., Gross, M., Kunetz, T., & Wen, Z. (2020). Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. Water Environment Research, 92(5), 766–778. doi:10.1002/wer.1273.
[50] Ghalhari, M. A., Mafigholami, R., Takdastan, A., & Khoshmaneshzadeh, B. (2022). Optimization of the biological salt removal process from artificial industrial wastewater with high TDS by Spirulina microalga using the response surface method. Water Science and Technology, 86(5), 1168–1180. doi:10.2166/wst.2022.270.
[51] Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995). Microalgae and wastewater treatment. Ecotoxicology and Environmental Safety, 31(3), 205–210. doi:10.1006/eesa.1995.1064.
[52] Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70. doi:10.1016/j.ecoleng.2006.04.003.
[53] Fard, F. A., Yengejeh, R. J., & Ghaeni, M. (2021). Efficiency of microalgae Scenedesmus in the removal of nitrogen from municipal wastewaters. Iranian Journal of Toxicology, 13(2), 1–6. doi:10.32598/IJT.13.2.483.2.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.