Research into Uranium Characteristics and Content in a Pregnant Solution During Leaching with Oxygen Saturation

Erbolat Aben, Saltanat Yussupova, Dalelkhan Akhmetkanov, Erbol Yelzhanov, Nurzhigit Sarybayev

Abstract


The aim of this study is to intensify the process of in situ leaching of uranium with saturation of the working solution with oxygen using a Venturi tube. One of the ways to increase the efficiency of underground leaching is to saturate the leaching solution with oxygen. However, this oxidizer has not found application due to the complexity and high cost of oxygen saturation in the solution. The results of the study showed that saturation of the leaching solution with oxygen using a Venturi tube leads to a decrease in the concentration of divalent iron and an increase in the concentration of trivalent iron. Thus, this leads to an increase in the average uranium content in the pregnant solution by 21.3% compared with the technology being used. The dependence of changes in the concentration of trivalent iron and the uranium content in the pregnant solution on the leaching time was obtained when the solution was saturated with oxygen. The application of the proposed technology of oxygen saturation in the solution will increase the uranium content in the pregnant solution and thereby shorten the time required to mine uranium reserves in the technological block.

 

Doi: 10.28991/CEJ-2024-010-05-016

Full Text: PDF


Keywords


Geotechnology; In Situ Leaching; Trivalent Iron; Oxidation; Lead Dioxide; Pregnant Solution.

References


Li, G., & Yao, J. (2024). A Review of In Situ Leaching (ISL) for Uranium Mining. Mining, 4(1), 120–148. doi:10.3390/mining4010009.

Johnson, D. B. (2014). Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology, 30, 24–31. doi:10.1016/j.copbio.2014.04.008.

Bruneton, P., & Cuney, M. (2016). Geology of uranium deposits. Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/B978-0-08-100307-7.00002-8.

Yuan, X., Liu, J., Xu, L., Zhou, Y., Zhao, K., & Hu, M. (2023). Study on the Leaching Conditions of the Shihongtan Uranium Deposit. Metals, 13(7), 1284. doi:10.3390/met13071284.

Dahlkamp, F. J. (2016). Uranium deposits of the World: Europe. Springer, Berlin, Germany. doi:10.1007/978-3-540-78554-5

Harraz, Hassan Z. (2013). Uranium Ore Deposits. Lecture, Tanta University, Tanta, Egypt.

Fairclough, Martin, Peter Woods, and Brett Moldovan. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018). Proceedings of an International Symposium, 25–29 June, 2018, Vienna, Austria.

Togizov, K., Kenzhetaev, Z., Temirkhanova, R., Muzapparova, A., Omirgali, A., & Altaibayev, B. (2024). The Influence of the Physicochemical Characteristics of Ores on the Efficiency of Underground Well Leaching of Uranium Deposits in Kazakhstan. Minerals, 14(4), 381. doi:10.3390/min14040381.

Pȩkala, A. (2017). Thorium and Uranium in the Rock Raw Materials Used for the Production of Building Materials. IOP Conference Series: Materials Science and Engineering, 245(2), 22033. doi:10.1088/1757-899X/245/2/022033.

Chen, J., & Li, W. (2022). Analysis on the Current Situation and Trend of Nuclear Energy Development. Proceedings of the 3rd International Conference on Green Energy, Environment and Sustainable Development, 277-282. doi:10.3233/atde220292.

Elmardi Suleiman Khayal, D. O. M., & Bashier Elagab, D. E. (2022). a Review Study in Mining Industry. International Journal of Engineering Applied Sciences and Technology, 7(6), 1–14. doi:10.33564/ijeast.2022.v07i06.001.

Oryngozha Ye.Ye., Vorobiev A.Ye., Zhangalieva M., & Uteshev I. Zh.,. (2020). Study Of Mining-Geological Characteristics Of Uranium Deposits Of Kazakhstan For Development By Underground Well Leaching. News Of National Academy Of Sciences Of The Republic Of Kazakhstan, 5(443), 156–164. doi:10.32014/2020.2518-170x.116.

Tsoy, B., Myrzakhmetov, S., Bekbotayeva, A., Bashilova, Y., & Yazikov, E. (2021). Application of radio-wave geointoscopy method to study the nature of spreading the solutions in the process of uranium underground leaching. Mining of Mineral Deposits, 15(4), 1–7. doi:10.33271/MINING15.04.001.

Yussupov, K., Aben, E., Akhmetkanov, D., Aben, K., & Yussupova, S. (2023). Investigation of the solid oxidizer effect on the metal geotechnology efficiency. Mining of Mineral Deposits, 17(4), 12–17. doi:10.33271/mining17.04.012.

Jerez, C. A. (2011). Bioleaching and Biomining for the Industrial Recovery of Metals. Comprehensive Biotechnology, Pergamon, Oxford, United Kingdom. doi:10.1016/b978-0-08-088504-9.00234-8.

Alexandrov, I., Malysheva, G., & Guzeva, T. (2012). A qualitative visual analysis of the fractured surfaces of epoxy/carbon fibre composite prepared by the melt and the solution technologies. ACMTAA-2012: Proceedings of the Second International Conference on Advanced Composite Materials and Technologies for Aerospace Applications. Glyndwr University, Wrexham, United Kingdom.

Yusupov, K. A., Aleshin, A. P., Bashilova, E. S., & Tsoy, B. V. (2021). Application of hydrogen peroxide to intensify in-situ leaching of uranium. Obogashchenie Rud, 2021(2), 21–26. doi:10.17580/or.2021.02.04.

Shen, N., Li, J., Guo, Y., & Li, X. (2020). Thermodynamic Modeling of in Situ Leaching of Sandstone-Type Uranium Minerals. Journal of Chemical and Engineering Data, 65(4), 2017–2031. doi:10.1021/acs.jced.9b01152.

Bai, Z., Zhao, X., Zhang, J., Wu, F., & Tang, Q. (2023). Optimisation of uranium–radium co-leaching from uranium ore. Journal of Radioanalytical and Nuclear Chemistry, 332(6), 1841–1845. doi:10.1007/s10967-023-08892-7.

Zhang, H., Zhang, T., & He, Y. (2023). Reactive transport model of uranium by CO2 + O2 in situ leaching. Environmental Science and Pollution Research, 30(24), 65976–65989. doi:10.1007/s11356-023-27200-0.

Britvina, A. S., Titova, S. M., Skripchenko, S. Yu., & Smirnov, A. L. (2019). Precipitation of uranium peroxide from nitrate-sulfate pregnant leach solutions. AIP Conference Proceedings, 2174, 020012. doi:10.1063/1.5134163.

Wang, P., Tan, K., Li, Y., Liu, Z., Li, C., Tan, W., Tian, Y., & Huang, W. (2022). Effect of Pyrite on the Leaching Kinetics of Pitchblende in the Process of Acid In Situ Leaching of Uranium. Minerals, 12(5), 570. doi:10.3390/min12050570.

Smirnov, A. L., Rychkov, V. N., Titova, S. M., Poponin, N. A., & Nalivayko, K. A. (2018). Precipitation of uranium from nitrate-sulfuric eluates by aqueous ammonia solution. Journal of Radioanalytical and Nuclear Chemistry, 317(2), 863–869. doi:10.1007/s10967-018-5942-x.

Otelbaev, M., Durmagambetov, A. A., & Seitkulov, Y. N. (2008). Conditions for the existence of a global strong solution to a class of nonlinear evolution equations in a Hilbert space. Proceedings of the Steklov Institute of Mathematics, 260(1), 194–203. doi:10.1134/S0081543808010148.

Zhang, J. X. (2017). Analysis on the effect of venturi tube structural parameters on fluid flow. AIP Advances, 7(6), 65315. doi:10.1063/1.4991441.

Aben, E., Toktaruly, B., Khairullayev, N., & Yeluzakh, M. (2021). Analyzing changes in a leach solution oxygenation in the process of uranium ore borehole mining. Mining of Mineral Deposits, 15(3), 39–44. doi:10.33271/MINING15.03.039.

Bashilova, E. S., & Baibatsha, A. B. (2022). Geological and geotechnical specifics of uranium production at hydrogenetic deposit Semizbay. Gornyi Zhurnal, 2022(7), 61–66. doi:10.17580/gzh.2022.07.10.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Erbolat Aben, Saltanat Yussupova, Dalelkhan Akhmetkanov, Erbol Yelzhanov, Nurzhigit Sarybayev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message