Application of Soft Computing to Address Uncertainty in Construction Project Management: A Systematic Literature Review

Setya Winarno, Sri Kusumadewi

Abstract


Decision-making in Construction Project Management (CPM) involves numerous ambiguous information and uncertainties due to the nature of construction project. The Soft Computing (SC) approach, which offers several data processing strategies under uncertainty, has been extensively researched in CPM studies for decision problem solving. Decisions that cannot be adequately handled by conventional computer systems are facilitated by the SC approach. The SC approach encompasses a variety of SC techniques that are constantly developing and becoming more widely used to address real construction challenges. This study aims to conduct Systematic Literature Reviews (SLR) on the development of mainstream SC techniques and their current application in construction projects. Using an inventive SLR technique, 83 CPM papers covering the years 2018 to 2023 were selected for this study and then classified into four primary application themes of SC in CPM. The research trend was then described using bibliometric analysis. Afterwards, a topic-based qualitative analysis was conducted to investigate the application of SC approaches in the construction field. Several potential challenges to current research were then elaborated. It also contributed to suggesting future directions for the advancement of SC techniques that would be advantageous for construction research and practice.

 

Doi: 10.28991/CEJ-2024-010-06-020

Full Text: PDF


Keywords


Decision; Uncertainty; Project; Construction Management; Soft Computing.

References


Tran, D. H. (2020). Optimizing time–cost in generalized construction projects using multiple-objective social group optimization and multi-criteria decision-making methods. Engineering, Construction and Architectural Management, 27(9), 2287–2313. doi:10.1108/ECAM-08-2019-0412.

Zhong, S., Elhegazy, H., & Elzarka, H. (2022). Key factors affecting the decision-making process for buildings projects in Egypt. Ain Shams Engineering Journal, 13(3), 101597. doi:10.1016/j.asej.2021.09.024.

Oppong, G. D., Chan, A. P. C., Ameyaw, E. E., Frimpong, S., & Dansoh, A. (2021). Fuzzy Evaluation of the Factors Contributing to the Success of External Stakeholder Management in Construction. Journal of Construction Engineering and Management, 147(11). doi:10.1061/(asce)co.1943-7862.0002155.

Talatahari, S., Singh, V. P., Alavi, A. H., & Kang, F. (2015). Soft computing methods in civil engineering. Science World Journal, 2015(2), 605871. doi:10.1155/2015/605871.

Smith, C. J., & Wong, A. T. C. (2022). Advancements in Artificial Intelligence-Based Decision Support Systems for Improving Construction Project Sustainability: A Systematic Literature Review. Informatics, 9(2), 43. doi:10.3390/informatics9020043.

Xiaolong, H., Huiqi, Z., Lunchao, Z., Nazir, S., Jun, D., & Khan, A. S. (2021). Soft Computing and Decision Support System for Software Process Improvement: A Systematic Literature Review. Scientific Programming, 1–14. doi:10.1155/2021/7295627.

Yenduri, G., & Gadekallu, T. R. (2022). A systematic literature review of soft computing techniques for software maintainability prediction: State-of-the-art, challenges and future directions. arXiv preprint arXiv:2209.10131. doi:10.48550/arXiv.2209.

Rekik, R., Kallel, I., Casillas, J., & Alimi, A.M. (2018). Assessing web sites quality: A systematic literature review by text and association rules mining. International Journal of Information Management, 38(1), 201–216. doi:10.1016/j.ijinfomgt.2017.06.007.

Tavana, M., & Sorooshian, S. (2024). A systematic review of the soft computing methods shaping the future of the metaverse. Applied Soft Computing, 150, 111098. doi:10.1016/j.asoc.2023.111098.

Ibrahim, D. (2016). An Overview of Soft Computing. Procedia Computer Science, 102, 34–38. doi:10.1016/j.procs.2016.09.366.

Sujatha, A., Govindaraju, L., Shivakumar, N., & Devaraj, V. (2021). Fuzzy knowledge-based system for suitability of soils in airfield applications. Civil Engineering Journal (Iran), 7(1), 140–152. doi:10.28991/cej-2021-03091643.

Kuchta, D., & Zabor, A. (2022). Fuzzy modelling and control of project cash flows. Journal of Intelligent & Fuzzy Systems, 42(1), 155–168. doi:10.3233/JIFS-219183.

Chen, L., & Pan, W. (2021). Review fuzzy multi-criteria decision-making in construction management using a network approach. Applied Soft Computing, 102. doi:10.1016/j.asoc.2021.107103.

Lin, S. S., Shen, S. L., Zhou, A., & Xu, Y. S. (2021). Risk assessment and management of excavation system based on fuzzy set theory and machine learning methods. Automation in Construction, 122, 103490. doi:10.1016/j.autcon.2020.103490.

Marzouk, M., Elhakeem, A., & Adel, K. (2024). Artificial neural networks applications in construction and building engineering (1991–2021): Science mapping and visualization. Applied Soft Computing, 152. doi:10.1016/j.asoc.2023.111174.

Alzwainy, F. M. S., Al-Suhaily, R. H., & Saco, Z. M. (2015). Project management and artificial neural networks: Fundamental and application. LAP LAMBERT Academic Publishing, Saarbrücken, Germany.

Liu, Y., Huang, L., Liu, X., Ji, G., Cheng, X., & Onstein, E. (2023). A late-mover genetic algorithm for resource-constrained project-scheduling problems. Information Sciences, 642. doi:10.1016/j.ins.2023.119164.

Bakshi, T., Sarkar, B., & Sanyal, S. K. (2012). An Evolutionary Algorithm for Multi-criteria Resource Constrained Project Scheduling Problem based on PSO. Procedia Technology, 6, 231–238. doi:10.1016/j.protcy.2012.10.028.

Khodabakhshian, A., Puolitaival, T., & Kestle, L. (2023). Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis. Buildings, 13(5), 1312. doi:10.3390/buildings13051312.

Lin, P., Wu, M., & Zhang, L. (2023). Probabilistic safety risk assessment in large-diameter tunnel construction using an interactive and explainable tree-based pipeline optimization method. Applied Soft Computing, 143. doi:10.1016/j.asoc.2023.110376.

Abdulfattah, B. S., Abdelsalam, H. A., Abdelsalam, M., Bolpagni, M., Thurairajah, N., Perez, L. F., & Butt, T. E. (2023). Predicting implications of design changes in BIM-based construction projects through machine learning. Automation in Construction, 155. doi:10.1016/j.autcon.2023.105057.

Dikmen, S. U., Ates, O., Akbiyikli, R., & Sonmez, M. (2009). A review of utilization of soft computing methods in construction management. In Managing it in Construction/Managing Construction for Tomorrow. Managing Construction for Tomorrow International Conference. doi:10.1201/9781482266665-99.

Nguyen, P. H. D., & Robinson Fayek, A. (2022). Applications of fuzzy hybrid techniques in construction engineering and management research. Automation in Construction, 134. doi:10.1016/j.autcon.2021.104064.

Tiruneh, G. G., Fayek, A. R., & Sumati, V. (2020). Neuro-fuzzy systems in construction engineering and management research. Automation in Construction, 119. doi:10.1016/j.autcon.2020.103348.

Tjiharjadi, S., Razali, S., & Sulaiman, H. A. (2022). A Systematic Literature Review of Multi-agent Pathfinding for Maze Research. Journal of Advances in Information Technology, 13(4), 358–367. doi:10.12720/jait.13.4.358-367.

Williams, R. I., Clark, L. A., Clark, W. R., & Raffo, D. M. (2021). Re-examining systematic literature review in management research: Additional benefits and execution protocols. European Management Journal, 39(4), 521–533. doi:10.1016/j.emj.2020.09.007.

Durach, C. F., Kembro, J., & Wieland, A. (2017). A New Paradigm for Systematic Literature Reviews in Supply Chain Management. Journal of Supply Chain Management, 53(4), 67–85. doi:10.1111/jscm.12145.

Zhu, X., Meng, X., & Zhang, M. (2021). Application of multiple criteria decision making methods in construction: A systematic literature review. Journal of Civil Engineering and Management, 27(6), 372–403. doi:10.3846/jcem.2021.15260.

Cai, J., Li, Z., Dou, Y., Teng, Y., & Yuan, M. (2023). Contractor selection for green buildings based on the fuzzy Kano model and TOPSIS: a developer satisfaction perspective. Engineering, Construction and Architectural Management, 30(10), 5073–5108. doi:10.1108/ECAM-01-2022-0054.

Vardin, A. N., Ansari, R., Khalilzadeh, M., Antucheviciene, J., & Bausys, R. (2021). An integrated decision support model based on BWM and Fuzzy-VIKOR techniques for contractor selection in construction projects. Sustainability (Switzerland), 13(12), 6933. doi:10.3390/su13126933.

Leśniak, A., Kubek, D., Plebankiewicz, E., Zima, K., & Belniak, S. (2018). Fuzzy AHP application for supporting contractors’ bidding decision. Symmetry, 10(11), 642. doi:10.3390/sym10110642.

Ujong, J. A., Mbadike, E. M., & Alaneme, G. U. (2022). Prediction of cost and duration of building construction using artificial neural network. Asian Journal of Civil Engineering, 23(7), 1117–1139. doi:10.1007/s42107-022-00474-4.

Omar, M. F., Nursal, A. T., & Nawi, M. N. M. (2018). Vendor selection in Industrialised Building System (IBS) with topsis under fuzzy environment. Malaysian Construction Research Journal, 3, 163–177.

Keles, A. E., Haznedar, B., Kaya Keles, M., & Arslan, M. T. (2023). The Effect of Adaptive Neuro-fuzzy Inference System (ANFIS) on Determining the Leadership Perceptions of Construction Employees. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(6), 4145–4157. doi:10.1007/s40996-023-01146-2.

Kaya Keles, M., Kilic, U., & Keles, A. E. (2021). Proposed Artificial Bee Colony Algorithm as Feature Selector to Predict the Leadership Perception of Site Managers. Computer Journal, 64(3), 408–417. doi:10.1093/comjnl/bxaa163.

Zhao, N., Ying, F. J., & Tookey, J. (2022). Knowledge visualisation for construction procurement decision-making: a process innovation. Management Decision, 60(4), 1039–1055. doi:10.1108/MD-01-2021-0051.

Su, L., & Li, H. (2021). Project procurement method decision-making with spearman rank correlation coefficient under uncertainty circumstances. International Journal of Decision Support System Technology, 13(2), 16–44. doi:10.4018/IJDSST.2021040102.

Khouja, A., Lehoux, N., & Cimon, Y. (2023). A fuzzy-based competitiveness assessment tool for construction SMEs. Benchmarking, 30(3), 868–898. doi:10.1108/BIJ-08-2021-0483.

Almohsen, A. S., Alsanabani, N. M., Alsugair, A. M., & Al-Gahtani, K. S. (2023). Integrated artificial and deep neural networks with time series to predict the ratio of the low bid to owner estimate. Engineering, Construction and Architectural Management, 31(13), 79–101. doi:10.1108/ECAM-05-2023-0454.

Zhang, L., Yao, H., Fu, Y., & Chen, Y. (2023). Comparing Subjective and Objective Measurements of Contract Complexity in Influencing Construction Project Performance: Survey versus Machine Learning. Journal of Management in Engineering, 39(4), 04023017. doi:10.1061/jmenea.meeng-5331.

Nguyen, P. T. (2021). Application Machine Learning in Construction Management. TEM Journal, 10(3), 1385–1389. doi:10.18421/TEM103-48.

Liu, J., Liu, Y., Shi, Y., & Li, J. (2020). Solving Resource-Constrained Project Scheduling Problem via Genetic Algorithm. Journal of Computing in Civil Engineering, 34(2), 04019055. doi:10.1061/(asce)cp.1943-5487.0000874.

Asadujjaman, M., Rahman, H. F., Chakrabortty, R. K., & Ryan, M. J. (2022). Multi-operator immune genetic algorithm for project scheduling with discounted cash flows. Expert Systems with Applications, 195. doi:10.1016/j.eswa.2022.116589.

Milat, M., Knezić, S., & Sedlar, J. (2022). Application of a Genetic Algorithm for Proactive Resilient Scheduling in Construction Projects. Designs, 6(1), 16. doi:10.3390/designs6010016.

Yin, J., Li, J., Yang, A., & Cai, S. (2024). Optimization of service scheduling problem for overlapping tower cranes with cooperative coevolutionary genetic algorithm. Engineering, Construction and Architectural Management, 31(3), 1348–1369. doi:10.1108/ECAM-08-2022-0767.

Shehadeh, A., Alshboul, O., Tatari, O., Alzubaidi, M. A., & Hamed El-Sayed Salama, A. (2022). Selection of heavy machinery for earthwork activities: A multi-objective optimization approach using a genetic algorithm. Alexandria Engineering Journal, 61(10), 7555–7569. doi:10.1016/j.aej.2022.01.010.

Golkhoo, F., & Moselhi, O. (2019). Optimized material management in construction using multi-layer perceptron. Canadian Journal of Civil Engineering, 46(10), 909–923. doi:10.1139/cjce-2018-0149.

Kaveh, A., & Rajabi, F. (2022). Fuzzy-multi-mode Resource-constrained Discrete Time-cost-resource Optimization in Project Scheduling Using ENSCBO. Periodica Polytechnica Civil Engineering, 66(1), 50–62. doi:10.3311/PPci.19145.

Chandanshive, V. B., & Kambekar, A. R. (2019). Estimation of Building Construction Cost Using Artificial Neural Networks. Journal of Soft Computing in Civil Engineering, 3(1), 91–107. doi:10.22115/SCCE.2019.173862.1098.

Obianyo, J. I., Okey, O. E., & Alaneme, G. U. (2022). Assessment of cost overrun factors in construction projects in Nigeria using fuzzy logic. Innovative Infrastructure Solutions, 7(5), 304. doi:10.1007/s41062-022-00908-7.

Deepa, G., Niranjana, A. J., & Balu, A. S. (2023). A hybrid machine learning approach for early cost estimation of pile foundations. Journal of Engineering, Design and Technology, 97. doi:10.1108/JEDT-03-2023-0097.

Arabiat, A., Al-Bdour, H., & Bisharah, M. (2023). Predicting the construction projects time and cost overruns using K-nearest neighbor and artificial neural network: a case study from Jordan. Asian Journal of Civil Engineering, 24(7), 2405–2414. doi:10.1007/s42107-023-00649-7.

Luo, L., Wu, X., Hong, J., & Wu, G. (2022). Fuzzy Cognitive Map-Enabled Approach for Investigating the Relationship between Influencing Factors and Prefabricated Building Cost Considering Dynamic Interactions. Journal of Construction Engineering and Management, 148(9), 04022081. doi:10.1061/(asce)co.1943-7862.0002336.

Elkalla, I., Elbeltagi, E., & El Shikh, M. (2021). Solving Fuzzy Time–Cost Trade-Off in Construction Projects Using Linear Programming. Journal of The Institution of Engineers (India): Series A, 102(1), 267–278. doi:10.1007/s40030-020-00489-7.

Gong, W., Xu, Z. S., Zhou, L., & Khder, M. A. (2022). Demonstration of application program of logistics public information management platform based on fuzzy constrained programming mathematical model. Applied Mathematics and Nonlinear Sciences, 8(1), 799–810. doi:10.2478/amns.2022.2.0067.

Moballeghi, E., Pourrostam, T., Abbasianjahromi, H., & Makvandi, P. (2023). Assessing the Effect of Building Information Modeling System (BIM) Capabilities on Lean Construction Performance in Construction Projects Using Hybrid Fuzzy Multi-criteria Decision-Making Methods. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(3), 1871–1891. doi:10.1007/s40996-022-00971-1.

Xia, J., Peng, R., Li, Z., Li, J., He, Y., & Li, G. (2023). Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network. Sensors, 23(19), 8169. doi:10.3390/s23198169.

Challa, R. K., & Rao, K. S. (2022). An Effective Optimization of Time and Cost Estimation for Prefabrication Construction Management Using Artificial Neural Networks. Revue d’Intelligence Artificielle, 36(1), 115–123. doi:10.18280/ria.360113.

Wang, H., & Hu, Y. (2022). Artificial Intelligence Technology Based on Deep Learning in Building Construction Management System Modeling. Advances in Multimedia, 2022, 1–9. doi:10.1155/2022/5602842.

Pour Rahimian, F., Seyedzadeh, S., Oliver, S., Rodriguez, S., & Dawood, N. (2020). On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Automation in Construction, 110. doi:10.1016/j.autcon.2019.103012.

Davila Delgado, J. M., & Oyedele, L. (2021). Deep learning with small datasets: using autoencoders to address limited datasets in construction management. Applied Soft Computing, 112. doi:10.1016/j.asoc.2021.107836.

Uncuoglu, E., Citakoglu, H., Latifoglu, L., Bayram, S., Laman, M., Ilkentapar, M., & Oner, A. A. (2022). Comparison of neural network, Gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 Trees methods for solving civil engineering problems. Applied Soft Computing, 129. doi:10.1016/j.asoc.2022.109623.

Ronghui, S., & Liangrong, N. (2022). An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management. Engineering with Computers, 38(S4), 2663–2680. doi:10.1007/s00366-021-01420-9.

Kanyilmaz, A., Tichell, P. R. N., & Loiacono, D. (2022). A genetic algorithm tool for conceptual structural design with cost and embodied carbon optimization. Engineering Applications of Artificial Intelligence, 112. doi:10.1016/j.engappai.2022.104711.

He, W., & Shi, Y. (2019). Multiobjective Construction Optimization Model Based on Quantum Genetic Algorithm. Advances in Civil Engineering, 2019, 1–8. doi:10.1155/2019/5153082.

Chassiakos, A. P., & Rempis, G. (2019). Evolutionary Algorithm Performance Evaluation in Project Time-Cost Optimization. Journal of Soft Computing in Civil Engineering, 3(2), 16–29. doi:10.22115/SCCE.2019.155434.1091.

Maghsoodi, A. I., & Khalilzadeh, M. (2018). Identification and Evaluation of Construction Projects’ Critical Success Factors Employing Fuzzy-TOPSIS Approach. KSCE Journal of Civil Engineering, 22(5), 1593–1605. doi:10.1007/s12205-017-1970-2.

Nguyen, P. T., Huynh, V. D. B., & Nguyen, Q. L. H. T. T. (2021). Evaluation Factors Influencing Construction Price Index in Fuzzy Uncertainty Environment. Journal of Asian Finance, Economics and Business, 8(2), 195–200. doi:10.13106/jafeb.2021.vol8.no2.0195.

Liu, C., M.E. Sepasgozar, S., Shirowzhan, S., & Mohammadi, G. (2022). Applications of object detection in modular construction based on a comparative evaluation of deep learning algorithms. Construction Innovation, 22(1), 141–159. doi:10.1108/CI-02-2020-0017.

Fan, C. L. (2022). Data mining model for predicting the quality level and classification of construction projects. Journal of Intelligent & Fuzzy Systems, 42(1), 139–153. doi:10.3233/JIFS-219182.

Zhang, Z., Wang, B., Wang, X., He, Y., Wang, H., & Zhao, S. (2022). Safety-Risk Assessment for TBM Construction of Hydraulic Tunnel Based on Fuzzy Evidence Reasoning. Processes, 10(12), 2597. doi:10.3390/pr10122597.

Li, Q., Guo, Y., Wang, B., Chen, Y., Xie, J., & Wen, C. (2023). Research on Risk Evaluation of Hydropower Engineering EPC Project Based on Improved Fuzzy Evidence Reasoning Model. Systems, 11(7), 327. doi:10.3390/systems11070327.

Balta, S., Birgonul, M. T., & Dikmen, I. (2018). Buffer Sizing Model Incorporating Fuzzy Risk Assessment: Case Study on Concrete Gravity Dam and Hydroelectric Power Plant Projects. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(1), 948. doi:10.1061/ajrua6.0000948.

Ammar, M. A., & Abd-ElKhalek, S. I. (2022). Criticality measurement in fuzzy project scheduling. International Journal of Construction Management, 22(2), 252–261. doi:10.1080/15623599.2019.1619226.

Patel, T. D., Haupt, T. C., & Bhatt, T. (2019). Fuzzy probabilistic approach for risk assessment of BOT toll roads in Indian context. Journal of Engineering, Design and Technology, 18(1), 251–269. doi:10.1108/jedt-05-2019-0138.

Wang, Y., Su, J., Zhang, S., Guo, S., Zhang, P., & Du, M. (2020). A Dynamic Risk Assessment Method for Deep-Buried Tunnels Based on a Bayesian Network. Geofluids, 2020, 1–14. doi:10.1155/2020/8848860.

Zhang, S., & Wang, X. (2023). Quantifying Schedule Delay Risk in Construction Projects: A Data-Driven Approach with BIM and Probabilistic Reliability Analysis. Advances in Civil Engineering, 2023, 1–21. doi:10.1155/2023/5525655.

Ou, X., Wu, Y., Wu, B., Jiang, J., & Qiu, W. (2022). Dynamic Bayesian Network for Predicting Tunnel-Collapse Risk in the Case of Incomplete Data. Journal of Performance of Constructed Facilities, 36(4), 04022034. doi:10.1061/(asce)cf.1943-5509.0001745.

Meng, G., Liu, J., Qiu, W., Wu, B., & Xu, S. (2022). A Failure Probability Evaluation Method for the Collapse of Drill-Blast Tunnels Based on a Multistate Cloud Bayesian Network. Frontiers in Earth Science, 10. doi:10.3389/feart.2022.856701.

Lin, C. L., Fan, C. L., & Chen, B. K. (2022). Hybrid Analytic Hierarchy Process–Artificial Neural Network Model for Predicting the Major Risks and Quality of Taiwanese Construction Projects. Applied Sciences (Switzerland), 12(15), 7790. doi:10.3390/app12157790.

Shirazi, D. H., & Toosi, H. (2023). Deep Multilayer Perceptron Neural Network for the Prediction of Iranian Dam Project Delay Risks. Journal of Construction Engineering and Management, 149(4), 04023011. doi:10.1061/jcemd4.coeng-12367.

Zaouga, W., & Rabai, L. B. A. (2021). A Decision Support System for Project Risk Management based on Ontology Learning. International Journal of Computer Information Systems and Industrial Management Applications, 13, 113–123.

Jiang, X., Wang, S., Wang, J., Lyu, S., & Skitmore, M. (2020). A decision method for construction safety risk management based on ontology and improved cbr: Example of a subway project. International Journal of Environmental Research and Public Health, 17(11), 3928. doi:10.3390/ijerph17113928.

Fan, C.-L. (2020). Defect Risk Assessment Using a Hybrid Machine Learning Method. Journal of Construction Engineering and Management, 146(9), 04020102. doi:10.1061/(asce)co.1943-7862.0001897.

Liu, X., Xu, F., Zhang, Z., & Sun, K. (2023). Fall-portent detection for construction sites based on computer vision and machine learning. Engineering, Construction and Architectural Management, 458. doi:10.1108/ECAM-05-2023-0458.

Alaneme, G. U., Dimonyeka, M. U., Ezeokpube, G. C., Uzoma, I. I., & Udousoro, I. M. (2021). Failure assessment of dysfunctional flexible pavement drainage facility using fuzzy analytical hierarchical process. Innovative Infrastructure Solutions, 6(2), 1-18. doi:10.1007/s41062-021-00487-z.

Meye, S. M., Li, G., Shen, Z., & Zhang, J. (2022). Fuzzy Multi-Mode Time–Cost–Quality Trade-Off Optimization in Construction Management of Hydraulic Structure Projects. Applied Sciences (Switzerland), 12(12), 6270. doi:10.3390/app12126270.

Cheng, M. Y., & Hoang, N. D. (2018). Estimating construction duration of diaphragm wall using firefly-tuned least squares support vector machine. Neural Computing and Applications, 30(8), 2489–2497. doi:10.1007/s00521-017-2840-z.

Golabchi, H., & Hammad, A. (2024). Estimating labor resource requirements in construction projects using machine learning. Construction Innovation, 24(4), 1048–1065. doi:10.1108/CI-11-2021-0211.

Ellis, F. Y. A., Amos-Abanyie, S., Kwofie, T. E., Afram, S. O., & Aigbavboa, C. O. (2023). Critical behavioural index for improving collaborative working in projects teams using fuzzy synthetic evaluation. International Journal of Project Organization and Management, 15(2), 184–217. doi:10.1504/IJPOM.2023.131675.

Shoar, S., & Banaitis, A. (2018). Application of fuzzy fault tree analysis to identify factors influencing construction labor productivity: A high-rise building case study. Journal of Civil Engineering and Management, 25(1), 41–52. doi:10.3846/jcem.2019.7785.

Watfa, M., Bykovski, A., & Jafar, K. (2022). Testing automation adoption influencers in construction using light deep learning. Automation in Construction, 141. doi:10.1016/j.autcon.2022.104448.

Xu, R., Kim, B. W., Moe, S. J. S., Khan, A. N., Kim, K., & Kim, D. H. (2023). Predictive worker safety assessment through on-site correspondence using multi-layer fuzzy logic in outdoor construction environments. Heliyon, 9(9), 19408. doi:10.1016/j.heliyon.2023.e19408.

Alkaissy, M., Arashpour, M., Golafshani, E. M., Hosseini, M. R., Khanmohammadi, S., Bai, Y., & Feng, H. (2023). Enhancing construction safety: Machine learning-based classification of injury types. Safety Science, 162. doi:10.1016/j.ssci.2023.106102.

Li, L., Yu, J., Cheng, H., & Peng, M. (2021). A smart helmet-based PLS-BPNN error compensation model for infrared body temperature measurement of construction workers during COVID-19. Mathematics, 9(21), 2808. doi:10.3390/math9212808.

Zhao, C. (2022). Construction of Safety Early Warning Model for Construction of Engineering Based on Convolution Neural Network. Computational Intelligence and Neuroscience, 2022, 1–7. doi:10.1155/2022/8937084.

Khanh, H. D., Kim, S. Y., & Linh, L. Q. (2023). Construction productivity prediction through Bayesian networks for building projects: case from Vietnam. Engineering, Construction and Architectural Management, 30(5), 2075–2100. doi:10.1108/ECAM-07-2021-0602.

Lin, C. L., & Fan, C. L. (2018). Examining association between construction inspection grades and critical defects using data mining and fuzzy logic. Journal of Civil Engineering and Management, 24(4), 301–317. doi:10.3846/jcem.2018.3072.

Li, X. K., Wang, X. M., & Lei, L. (2020). The application of an ANP-Fuzzy comprehensive evaluation model to assess lean construction management performance. Engineering, Construction and Architectural Management, 27(2), 356–384. doi:10.1108/ECAM-01-2019-0020.

Naji, K. K., Gunduz, M., & Naser, A. F. (2022). An Adaptive Neurofuzzy Inference System for the Assessment of Change Order Management Performance in Construction. Journal of Management in Engineering, 38(2), 04021098. doi:10.1061/(asce)me.1943-5479.0001017.

Faraji, A. (2021). Neuro-fuzzy system based model for prediction of project performance in downstream sector of petroleum industry in Iran. Journal of Engineering, Design and Technology, 19(6), 1268–1290. doi:10.1108/JEDT-06-2020-0241.

Nasirzadeh, F., Kabir, H. M. D., Akbari, M., Khosravi, A., Nahavandi, S., & Carmichael, D. G. (2020). ANN-based prediction intervals to forecast labour productivity. Engineering, Construction and Architectural Management, 27(9), 2335–2351. doi:10.1108/ECAM-08-2019-0406.

Oliveira, B. A. S., Neto, A. P. de F., Fernandino, R. M. A., Carvalho, R. F., Bo, T., & Guimarães, F. G. (2024). Automated construction management platform with image analysis using deep learning neural networks. Multimedia Tools and Applications, 83(10), 28927–28945. doi:10.1007/s11042-023-16623-z.

Lung, L. W., & Wang, Y. R. (2023). Applying Deep Learning and Single Shot Detection in Construction Site Image Recognition. Buildings, 13(4), 1074. doi:10.3390/buildings13041074.

Oliveira, B. A. S., De Faria Neto, A. P., Fernandino, R. M. A., Carvalho, R. F., Fernandes, A. L., & Guimaraes, F. G. (2021). Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access, 9, 19195–19207. doi:10.1109/ACCESS.2021.3054468.

Fan, C. L. (2022). Evaluation of Classification for Project Features with Machine Learning Algorithms. Symmetry, 14(2), 372. doi:10.3390/sym14020372.

Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Alsolami, E., Samad, S., Mahmoud, M., Alarood, A. A., Zainol, A., Majeed, H. D., & Shuib, L. (2020). Assessment of sustainability indicators for green building manufacturing using fuzzy multi-criteria decision making approach. Journal of Cleaner Production, 277. doi:10.1016/j.jclepro.2020.122905.

Fazeli, A., Jalaei, F., Khanzadi, M., & Banihashemi, S. (2019). BIM-integrated TOPSIS-Fuzzy framework to optimize selection of sustainable building components. International Journal of Construction Management, 22(7), 1240–1259. doi:10.1080/15623599.2019.1686836.

Fallahpour, A., Wong, K. Y., Rajoo, S., Olugu, E. U., Nilashi, M., & Turskis, Z. (2020). A fuzzy decision support system for sustainable construction project selection: an integrated FPP-FIS model. Journal of Civil Engineering and Management, 26(3), 247–258. doi:10.3846/jcem.2020.12183.

Albasri, H. W., & Naimi, S. (2023). Development of a hybrid artificial neural network method for evaluation of the sustainable construction projects. Acta Logistica, 10(3), 345–352. doi:10.22306/AL.V10I3.378.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-020

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Setya Winarno, Sri Kusumadewi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message