Impact of Rear Slope Variation on Rubble Mound Breakwater Stability Under Seismic Loading

Abdelmajid Morabit, Abdelouafi El Ghoulbzouri

Abstract


This study aims to enhance the seismic stability of rubble mound breakwaters, crucial maritime structures, by examining how variations in the rear slope angle affect their response to seismic loads. Utilizing the Plaxis 2D software, a finite element method was employed to simulate the behavior of a conventional rubble mound breakwater under different seismic conditions. The analysis considered three different rear slope angles and subjected each to various seismic loads characterized by differing amplitudes and frequencies. Our findings indicate that the rear slope inclination significantly influences the seismic response of the breakwaters, notably affecting the displacements and deformations within the structure. The most optimal angle of inclination was identified, which minimized the seismic-induced deformations, thereby potentially improving the structural integrity and longevity of these maritime defenses. This investigation not only provides valuable insights into the design of more resilient maritime structures but also introduces an approach to optimize breakwater design for better performance under seismic conditions, marking a notable improvement in the field of maritime engineering.

 

Doi: 10.28991/CEJ-SP2024-010-08

Full Text: PDF


Keywords


Rubble Mound Breakwater; Seismic Loads; Stability; Amplitudes; Frequencies; Rear Slope; Finite Element Method; Displacements.

References


Campos, Ã., Castillo, C., & Molina-Sanchez, R. (2020). Damage in rubble mound breakwaters. Part I: Historical review of damage models. Journal of Marine Science and Engineering, 8(5), 317. doi:10.3390/JMSE8050317.

Cihan, K., & Yuksel, Y. (2013). Deformation of breakwater armoured artificial units under cyclic loading. Applied Ocean Research, 42, 79–86. doi:10.1016/j.apor.2013.05.002.

Campos, Ã., Molina-Sanchez, R., & Castillo, C. (2020). Damage in rubble mound breakwaters. Part II: Review of the definition, parameterization, and measurement of damage. Journal of Marine Science and Engineering, 8(5), 306. doi:10.3390/JMSE8050306.

Mertens, M. (2007). Stability of rock on slopes under wave attack: Comparison and analysis of datasets Van der Meer (1988) and Van Gent (2003). Master Thesis, Delft university of Technology, Delft, Netherlands.

Reedijk, B., Muttray, M., van den Berge, A., & de Rover, R. (2009). Effect of Core Permeability on Armour Layer Stability. Coastal Engineering 2008, 3358-367. doi:10.1142/9789814277426_0278.

Melby, J. A. (2005). Damage development on stone-armored breakwaters and revetments. Coastal and Hydraulics Engineering Technical Note, U.S. Army Corps of Engineers, Washington, United States.

Garcia, R., & Kobayashi, N. (2014). Damage Variations on Low-Crested Breakwaters. Coastal Engineering Proceedings, 1(34), 14. doi:10.9753/icce.v34.structures.14.

Campos Duque, A. (2016). A methodology for the analysis of damage progression in rubble mound breakwaters. Ph.D. Thesis, Universidad de Castilla-La Mancha, Ciudad Real, Spain.

van Gent, M. R. A., de Almeida, E., & Hofland, B. (2019). Statistical analysis of the stability of rock slopes. Journal of Marine Science and Engineering, 7(3), 60. doi:10.3390/jmse7030060.

de Almeida, E., van Gent, M. R. A., & Hofland, B. (2019). Damage characterization of rock slopes. Journal of Marine Science and Engineering, 7(1), 10. doi:10.3390/jmse7010010.

Stassen, Y., & Lesprit, I. (2010). Design of a reprofiling berm dike for the Roscoff-Bloscon port extension project. XIèmes Journées, Les Sables d’Olonne, 761–770. doi:10.5150/jngcgc.2010.085-s. (In French).

Celli, D., Pasquali, D., De Girolamo, P., & Di Risio, M. (2018). Effects of submerged berms on the stability of conventional rubble mound breakwaters. Coastal Engineering, 136, 16–25. doi:10.1016/j.coastaleng.2018.01.011.

Sasikumar, A., Bihs, H., Kamath, A., Musch, O., & Arntsen, Ø. A. (2017). Numerical Investigation of Wave Kinematics Inside Berm Breakwaters with Varying Berm Geometry Using REEF3D. Volume 7A: Ocean Engineering. doi:10.1115/omae2017-62543.

Tørum, A., & Sigurdarson, S. (2002). PIANC Working Group No. 40: Guidelines for the Design and Construction of Berm Breakwaters. Breakwaters, Coastal Structures and Coastlines, 373–384. doi:10.1680/bcsac.30428.0031.

Van Gent, M. R. A., & van der Werf, I. M. (2014). Rock toe stability of rubble mound breakwaters. Coastal Engineering, 83, 166–176. doi:10.1016/j.coastaleng.2013.10.012.

Muñoz-Perez, J. J., & Medina, R. (2010). Comparison of long-, medium- and short-term variations of beach profiles with and without submerged geological control. Coastal Engineering, 57(3), 241–251. doi:10.1016/j.coastaleng.2009.09.011.

Clavero, M., Díaz-Carrasco, P., & Losada, M. A. (2020). Bulk wave dissipation in the armor layer of slope rock and cube armored breakwaters. Journal of Marine Science and Engineering, 8(3), 152. doi:10.3390/jmse8030152.

PIANIC. (2001). Seismic Design Guidelines for Port Structures. Swets & Zeitlinger B.V., Lisse, Netherlands.

Yüksel, Y., Çetin, K. Ö., Özgüven, O., Isik, N. S., Cevik, E., & Sümer, B. M. (2004). Seismic response of a rubble mound breakwater in Turkey. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 157(4), 151–161. doi:10.1680/maen.2004.157.4.151.

Sumer, B. M., Ansal, A., Cetin, K. O., Damgaard, J., Gunbak, A. R., Hansen, N.-E. O., Sawicki, A., Synolakis, C. E., Yalciner, A. C., Yuksel, Y., & Zen, K. (2007). Earthquake-Induced Liquefaction around Marine Structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(1), 55–82. doi:10.1061/(asce)0733-950x(2007)133:1(55).

Yuksel, Y., Alpar, B., Yalciner, A. C., Cevik, E., Ozguven, O., & Celikoglu, Y. (2003). Effects of the eastern Marmara Earthquake on marine structures and coastal areas. Maritime Engineering, 156(2), 147–163. doi:10.1680/maen.156.2.147.37964.

Cihan, K., & Yuksel, Y. (2011). Deformation of rubble-mound breakwaters under cyclic loads. Coastal Engineering, 58(6), 528–539. doi:10.1016/j.coastaleng.2011.02.002.

van Gent, M. R. A. (2013). Rock stability of rubble mound breakwaters with a berm. Coastal Engineering, 78, 35–45. doi:10.1016/j.coastaleng.2013.03.003.

Onyelowe, K. C., Nimbalkar, A., Reddy, N. G., Baldovino, J. de J. A., Hanandeh, S., & Ebid, A. M. (2023). Seepage Analysis and Optimization of Reservoir Earthen Embankment with Double Textured HDPE Geo-Membrane Barrier. Civil Engineering Journal, 9(11), 2736–2751. doi:10.28991/cej-2023-09-11-07.

Sajan, M. K., Chaudhary, B., Akarsh, P. K., & Kumar, S. (2024). Geosynthetic reinforced rubble mound breakwater for mitigation of tsunami-induced damage. Geotextiles and Geomembranes, 52(1), 72–94. doi:10.1016/j.geotexmem.2023.09.003.

Sajan, M. K., Chaudhary, B., Kotrabasappa, A. P., Kumar, S., & Sah, B. (2024). Novel Techniques for Reinforcing Rubble-Mound Breakwater against Tsunamis. Journal of Geotechnical and Geoenvironmental Engineering, 150(3), 04024002. doi:10.1061/jggefk.gteng-11773.

Akarsh, P. K., Chaudhary, B., Sajan, M. K., & Kumar, S. (2024). Seismic Responses of Rubble Mound Breakwater: Numerical Analyses. Geo-Sustainnovation for Resilient Society. CREST 2023 2023, Lecture Notes in Civil Engineering, 446, Springer, Singapore. doi:10.1007/978-981-99-9219-5_22.

Akarsh, P. K., Chaudhary, B., Sajan, M. K., Kumar, S., & Sah, B. (2024). Seismic stability evaluation of rubble mound breakwater: Shake table tests and numerical analyses. Soil Dynamics and Earthquake Engineering, 178, 108466. doi:10.1016/j.soildyn.2024.108466.

Van Der Meer, J. W. (1995). Conceptual Design of Rubble Mound Breakwaters. Advances in Coastal and Ocean Engineering, 221–315, World Scientific, Singapore. doi:10.1142/9789812797582_0005.

Brinkgreve, R. B. J., Broere, W., Waterman, D., Al-Khoury, R., Bakker, K., Bonnier, P., ... & Den Haag, D. (2004). 2D–Version 8. Plaxis manuals, Delft university of Technology, Delft, Netherlands.

CIRIA C683. (2007). The Rock Manual, The use of rock in hydraulic engineering (2nd Ed.). CIRIA, London, United Kingdom.


Full Text: PDF

DOI: 10.28991/CEJ-SP2024-010-08

Refbacks





Copyright (c) 2024 ABDELMAJID MORABIT, ABDELOUAFI EL GHOULBZOURI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message