Quality of Harvested Rainwater from a Green and a Bitumen Roof in an Air Polluted Region

Emil Tsanov, Dobril Valchev, Irina Ribarova, Galina Dimova

Abstract


A one-year study was conducted to evaluate the impact of air pollution and roof coating on runoff quality. An existing 440 sq meter bitumen roof of a single-story building was coated with an extensive green roof layer on one half. Rainfall and runoff samples from both roofs were collected during 11 rainfall events after the separation of the first flush. The study monitored several key parameters, including pH, electrical conductivity (EC), turbidity, chemical oxygen demand (COD), ammonium nitrogen, nitrate nitrogen, and phosphates. The study revealed that both types of roofs altered the rainfall quality, but the changes caused by the green roof were more substantial. Although the retention of runoff from green roofs has a widely acknowledged positive impact on collecting systems, our study shows that green roofs also result in a 7.5-fold increase in COD concentrations, a 5.4-fold increase in the sum of ammonium and nitrate nitrogen, and a 2.3-fold increase in phosphates compared to bitumen roofs. A clear link between the quality of rainwater/runoff and air pollution was not established. The study's findings will aid in the development and management of local rainwater harvesting systems and enhance global understanding of the primary quality parameters of various roof types, particularly in regions with air pollution.

 

Doi: 10.28991/CEJ-2024-010-05-015

Full Text: PDF


Keywords


Runoff Quality; Rainwater Harvesting; Green Roof; Bitumen Roof; Air Pollution; Rainfall.

References


Wang, F., Harindintwali, J. D., Wei, K., Shan, Y., Mi, Z., Costello, M. J., ... & Tiedje, J. M. (2023). Climate change: Strategies for mitigation and adaptation. The Innovation Geoscience, 1(1), 100015-61. doi:10.59717/j.xinn-geo.2023.100015.

Rahmani, F., & Fattahi, M. H. (2024). Investigation of alterations in droughts and floods patterns induced by climate change. Acta Geophysica, 72(1), 405–418. doi:10.1007/s11600-023-01043-2.

Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (2020). Assessment of climate change over the Indian region: a report of the ministry of earth sciences (MOES), government of India. Springer Nature, Berlin, Germany. doi:10.1007/978-981-15-4327-2.

Hughes, J., Cowper-Heays, K., Olesson, E., Bell, R., & Stroombergen, A. (2021). Impacts and implications of climate change on wastewater systems: A New Zealand perspective. Climate Risk Management, 31, 100262. doi:10.1016/j.crm.2020.100262.

The World Bank. (2024). Climate change knowledge portal. Washington, D.C., United States of America. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on April 2024).

European Environment Agency. (2012). Blueprint to Safeguard Europe’s Water Resources. European Environment Agency, Copenhagen, Denmark.

Regulation (EU) 2020/741. (2020). Minimum Requirements for Water Reuse. The European Parliament and of the Council, trasbourg, France.

Khayan, K., Heru Husodo, A., Astuti, I., Sudarmadji, S., & Sugandawaty Djohan, T. (2019). Rainwater as a Source of Drinking Water: Health Impacts and Rainwater Treatment. Journal of Environmental and Public Health, 2019, 1–10. doi:10.1155/2019/1760950.

Mukaromah, H. (2020). Rainwater Harvesting as an Alternative Water Source in Semarang, Indonesia: The Problems and Benefits. IOP Conference Series: Earth and Environmental Science, 447(1), 12059. doi:10.1088/1755-1315/447/1/012059.

Bui, T. T., Nguyen, D. C., Han, M., Kim, M., & Park, H. (2021). Rainwater as a source of drinking water: A resource recovery case study from Vietnam. Journal of Water Process Engineering, 39, 101740. doi:10.1016/j.jwpe.2020.101740.

Zabidi, H. A., Goh, H. W., Chang, C. K., Chan, N. W., & Zakaria, N. A. (2020). A review of roof and pond rainwater harvesting systems for water security: The design, performance and way forward. Water (Switzerland), 12(11), 1–22. doi:10.3390/w12113163.

Zdeb, M., Zamorska, J., Papciak, D., & Słyś, D. (2020). The quality of rainwater collected from roofs and the possibility of its economic use. Resources, 9(2), 12. doi:10.3390/resources9020012.

Jamal, A. H. M. S. I. M., Tarek, Y. A., Siddique, M. A. B., Shaikh, M. A. A., Debnath, S. C., Uddin, M. R., Ahmed, S., Akbor, M. A., Al-Mansur, M. A., Islam, A. R. M. T., Khan, R., Moniruzzaman, M., & Sultana, S. (2023). Development of a fabricated first-flush rainwater harvested technology to meet up the freshwater scarcity in a South Asian megacity, Dhaka, Bangladesh. Heliyon, 9(1), 13027. doi:10.1016/j.heliyon.2023.e13027.

Rowe, D. B. (2011). Green roofs as a means of pollution abatement. Environmental Pollution, 159(8–9), 2100–2110. doi:10.1016/j.envpol.2010.10.029.

Zhang, L., Liu, W., Zheng, B., Xu, A., & Sun, B. (2020). Features of roof rainwater runoff pollution in a Northern Coastal city under the effects of multiple factors. International Journal of Sustainable Development and Planning, 15(4), 431–438. doi:10.18280/ijsdp.150403.

Li, S., Fan, R., Luo, D., Xue, Q., Li, L., Yu, X., Huang, T., Yang, H., & Huang, C. (2020). Variation in quantity and quality of rainwater dissolved organic matter (DOM) in a peri-urban region: Implications for the effect of seasonal patterns on DOM fates. Atmospheric Environment, 239, 117769. doi:10.1016/j.atmosenv.2020.117769.

Emmanuel, U., Samuel, K., & Ugona, U. (2021). Assessment of the Suitability of Urban Residential Roof Catchments for Rainwater Capturing in Umuahia, Southeastern Nigeria. Jordan Journal of Earth & Environmental Sciences, 12(1), 22-35.

Farreny, R., Morales-Pinzón, T., Guisasola, A., Tayà, C., Rieradevall, J., & Gabarrell, X. (2011). Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Research, 45(10), 3245–3254. doi:10.1016/j.watres.2011.03.036.

Liu, W., Engel, B. A., Chen, W., Wei, W., Wang, Y., & Feng, Q. (2021). Quantifying the contributions of structural factors on runoff water quality from green roofs and optimizing assembled combinations using Taguchi method. Journal of Hydrology, 593, 125864. doi:10.1016/j.jhydrol.2020.125864.

Mao, J., Xia, B., Zhou, Y., Bi, F., Zhang, X., Zhang, W., & Xia, S. (2021). Effect of roof materials and weather patterns on the quality of harvested rainwater in Shanghai, China. Journal of Cleaner Production, 279, 123419. doi:10.1016/j.jclepro.2020.123419.

Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192. doi:10.1016/j.buildenv.2018.05.063.

Todorov, D., Driscoll, C. T., & Todorova, S. (2018). Long-term and seasonal hydrologic performance of an extensive green roof. Hydrological Processes, 32(16), 2471–2482. doi:10.1002/hyp.13175.

Harper, G. E., Limmer, M. A., Showalter, W. E., & Burken, J. G. (2015). Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecological Engineering, 78, 127–133. doi:10.1016/j.ecoleng.2014.06.004.

Santana, T. C., Guiselini, C., Cavalcanti, S. D. L., Silva, M. V. da, Vigoderis, R. B., Santos Júnior, J. A., Moraes, A. S., & Jardim, A. M. da R. F. (2022). Quality of rainwater drained by a green roof in the metropolitan region of Recife, Brazil. Journal of Water Process Engineering, 49, 102953. doi:10.1016/j.jwpe.2022.102953.

Buffam, I., Mitchell, M. E., & Durtsche, R. D. (2016). Environmental drivers of seasonal variation in green roof runoff water quality. Ecological Engineering, 91, 506–514. doi:10.1016/j.ecoleng.2016.02.044.

Sofia Municipality. (2024). Sofia Municipality, Sofia, Bulgaria. Available online: https://www.sofia.bg/web/tourism-in-sofia/geographic-characteristics-of-sofia (accessed on March 2024). (In Bulgarian).

Sofia Municipality. (2024). Tourism in Sofia: Geographic Characteristics of Sofia. Sofia, Bulgaria. Available online: https://www.sofia.bg/web/tourism-in-sofia/geographic-characteristics-of-sofia (accessed on March 2024). (In Bulgarian).

Sofia Municipality. (2023). Climate Change Adaptation Strategy for the Municipality of Sofia, 2023. Sofia, Bulgaria. Available online: https://www.sofia.bg/documents/d/guest/2023-03-09-4-annex-4_secap_sofia_2021-2030-en (accessed on March 2024).

NIMH. (2024). National Institute of Meteorology and Hydrology monthly bulletin for 2022. Sofia, Bulgaria. Available online: https://plovdiv.meteo.bg/en/ (accessed on March 2024). (In Bulgarian).

European Commission (2009). European Commission DIRECTIVE 2009/90/EC. Laying Down. The European Parliament and of the Council, Strasbourg, France.

Karapanagioti H.K. (2016). Water Management, Treatment and Environmental Impact. Encyclopedia of Food and Health: Reference Module in Food Science, 453-457. doi:10.1016/B978-0-12-384947-2.00740-6.

Liu, R., Stanford, R. L., Deng, Y., Liu, D., Liu, Y., & Yu, S. L. (2020). The influence of extensive green roofs on rainwater runoff quality: a field-scale study in southwest China. Environmental Science and Pollution Research, 27(12), 12932–12941. doi:10.1007/s11356-019-06151-5.

Vijayaraghavan, K., Joshi, U. M., & Balasubramanian, R. (2012). A field study to evaluate runoff quality from green roofs. Water Research, 46(4), 1337–1345. doi:10.1016/j.watres.2011.12.050.

Lim, H. S., Segovia, E., & Ziegler, A. D. (2021). Water quality impacts of young green roofs in a tropical city: A case study from Singapore. Blue-Green Systems, 3(1), 145–163. doi:10.2166/bgs.2021.007.

Aitkenhead-Peterson, J. A., Dvorak, B. D., Volder, A., & Stanley, N. C. (2011). Chemistry of growth medium and leachate from green roof systems in south-central Texas. Urban Ecosystems, 14(1), 17–33. doi:10.1007/s11252-010-0137-4.

Karczmarczyk, A., Bus, A., & Baryla, A. (2018). Phosphate leaching from green roof substrates-Can green roofs pollute urban water bodies? Water (Switzerland), 10(2), 199. doi:10.3390/w10020199.

Melidis, P., Akratos, C. S., Tsihrintzis, V. A., & Trikilidou, E. (2007). Characterization of rain and roof drainage water quality in Xanthi, Greece. Environmental Monitoring and Assessment, 127(1–3), 15–27. doi:10.1007/s10661-006-9254-1.

Taffere, G. R., Beyene, A., Vuai, S. A. H., Gasana, J., & Seleshi, Y. (2016). Reliability analysis of roof rainwater harvesting systems in a semi-arid region of sub-Saharan Africa: case study of Mekelle, Ethiopia. Hydrological Sciences Journal, 61(6), 1135–1140. doi:10.1080/02626667.2015.1061195.

Bertuzzi, G., & Ghisi, E. (2021). Potential for Potable Water Savings Due to Rainwater Use in a Precast Concrete Factory. Water 2021, 13, 448. doi:10.3390/w13040448.

Lani, N. H. M., Yusop, Z., & Syafiuddin, A. (2018). A review of rainwater harvesting in Malaysia: Prospects and challenges. Water (Switzerland), 10(4), 506. doi:10.3390/w10040506.

Zdeb, M., Zamorska, J., Papciak, D., & Skwarczyńska-Wojsa, A. (2021). Investigation of microbiological quality changes of roof-harvested rainwater stored in the tanks. Resources, 10(10), 103. doi:10.3390/resources10100103.

Lee, J. Y., Bak, G., & Han, M. (2012). Quality of roof-harvested rainwater - Comparison of different roofing materials. Environmental Pollution, 162, 422–429. doi:10.1016/j.envpol.2011.12.005.

Zdeb, M., Papciak, D., & Zamorska, J. (2018). An assessment of the quality and use of rainwater as the basis for sustainable water management in suburban areas. E3S Web of Conferences, 45, 00111. doi:10.1051/e3sconf/20184500111.

Lai, Y. H., Ahmad, Y., Yusoff, I., Bong, C. W., & Kong, S. Y. (2018). Effects of roof pitch gradient and material to harvested rainwater quality. IOP Conference Series: Materials Science and Engineering, 401(1), 12011. doi:10.1088/1757-899X/401/1/012011.

Guayjarernpanishk, P., Bussababodhin, P., & Chiangpradit, M. (2023). The partial L-moment of the four kappa distribution. Emerging Science Journal, 7(4), 1116-1125. doi:10.28991/ESJ-2023-07-04-06.

Despins, C., Farahbakhsh, K., & Leidl, C. (2009). Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Journal of Water Supply: Research and Technology - AQUA, 58(2), 117–134. doi:10.2166/aqua.2009.013.

Thomas, P. R., & Greene, G. R. (1993). Rainwater quality from different roof catchments. Water Science and Technology, 28(3–5), 291–299. doi:10.2166/wst.1993.0430.

Bin Muhamad, M. A., & Abidin, M. Z. (2016). Water Quality Assessment of Rainwater Collected from Rooftop at UTM. Universiti Teknologi Malaysia, UTM, 83-93.

Baryła, A., Karczmarczyk, A., Bus, A., & Sas, W. (2023). Water retention and runoff quality of a wildflower meadow green roof with different drainage layers. Ecohydrology and Hydrobiology. doi:10.1016/j.ecohyd.2023.11.008.

Cristiano, E., Carucci, A., Piredda, M., Dessì, E., Urru, S., Deidda, R., & Viola, F. (2023). The effects of multilayer blue-green roof on the runoff water quality. Heliyon, 9(11), 21966. doi:10.1016/j.heliyon.2023.e21966.

Marín, C., El Bachawati, M., & Pérez, G. (2023). The impact of green roofs on urban runoff quality: A review. Urban Forestry and Urban Greening, 90, 128138. doi:10.1016/j.ufug.2023.128138.

Czemiel Berndtsson, J. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351–360. doi:10.1016/j.ecoleng.2009.12.014.

Lim, H. S. (2023). What happens to nitrogen and phosphorus nutrient contributions from green roofs as they age? A review. Environmental Advances, 12, 100366. doi:10.1016/j.envadv.2023.100366.

ExEA. (2024). Executive Environment Agency. Reports and Bulletins, Sofia, Bulgaria. Available online: https://eea.government.bg/en/output/index.html (accessed on April 2024).

Prakash, J., Agrawal, S. B., & Agrawal, M. (2023). Global Trends of Acidity in Rainfall and Its Impact on Plants and Soil. Journal of Soil Science and Plant Nutrition, 23(1), 398–419. doi:10.1007/s42729-022-01051-z.

Deng, Y. (2021). Pollution in rainwater harvesting: A challenge for sustainability and resilience of urban agriculture. Journal of Hazardous Materials Letters, 2, 100037. doi:10.1016/j.hazl.2021.100037.

Bharti, P. K., Singh, V., & Tyagi, P. K. (2017). Assessment of rainwater quality in industrial area of rural Panipat (Haryana), India. Archives of Agriculture and Environmental Science, 2(3), 219-223.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Emil Tsanov, Dobril Valchev, Irina Ribarova, Galina Dimova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message