Utilizing GIS and Machine Learning for Traffic Accident Prediction in Urban Environment
Downloads
Doi: 10.28991/CEJ-2024-010-06-013
Full Text: PDF
[2] PBS. (2023). Announcement of Results of 7th Population and Housing Census-2023 ‘The Digital Census'. Pakistan Bureau of Statistics, Islamabad, Pakistan. Available online: https://www.pbs.gov.pk/content/announcement-results-7th-population-and-housing-census-2023-digital-census (accessed on March 2024).
[3] World Life Expectancy. (2023). World health rankings. Available online: https://www.worldlifeexpectancy.com/cause-of-death/road-traffic-accidents/by-country/ (accessed on May 2024).
[4] Rais, R. B. (2023). Road safety in Pakistan is the not-so-silent killer everybody is ignoring. ARAB NEWS, Riyadh, Saudi Arabia.
[5] Pusuluri, V. L., & Dangeti, M. R. (2024). Applications of QGIS and machine learning for road crash spot identification. Earth Science Informatics, 17(3), 2331–2346. doi:10.1007/s12145-024-01271-0.
[6] Khatun, M. S., Hossain, M. A., Kabir, M. A., & Rahman, M. A. (2024). Identification and analysis of accident black spots using Geographic Information System (GIS): A study on Kushtia-Jhenaidah national highway (N704), Bangladesh. Heliyon, 10(3), e25952. doi:10.1016/j.heliyon.2024.e25952.
[7] Chun, U., Lim, J., & Kim, H. (2024). Analysis of Hotspots in and outside School Zones: A Case Study of Seoul. Journal of Advanced Transportation, 2024, 1–13. doi:10.1155/2024/6613603.
[8] Hammas, M., & Al-Modayan, A. (2022). Spatial Analysis of Traffic Accidents in the City of Medina Using GIS. Journal of Geographic Information System, 14(05), 462–477. doi:10.4236/jgis.2022.145025.
[9] Feizizadeh, B., Omarzadeh, D., Sharifi, A., Rahmani, A., Lakes, T., & Blaschke, T. (2022). A GIS-Based Spatiotemporal Modelling of Urban Traffic Accidents in Tabriz City during the COVID-19 Pandemic. Sustainability (Switzerland), 14(12), 7468. doi:10.3390/su14127468.
[10] Rahman, M. T., Jamal, A., & Al-Ahmadi, H. M. (2020). Examining hotspots of traffic collisions and their spatial relationships with land use: A GIS-based geographically weighted regression approach for Dammam, Saudi Arabia. ISPRS International Journal of Geo-Information, 9(9), 540. doi:10.3390/ijgi9090540.
[11] ESRI. (2024). Geographic Information System. Geographic information system company (ESRI), Redlands, United States. Available online: https://www.esri.com/en-us/what-is-gis/overview (accessed on May 2024).
[12] Le, K. G., Liu, P., & Lin, L.-T. (2020). Traffic accident hotspot identification by integrating kernel density estimation and spatial autocorrelation analysis: a case study. International Journal of Crashworthiness, 27(2), 543–553. doi:10.1080/13588265.2020.1826800.
[13] Zahran, E.-S. M. M., Tan, S. J., Tan, E. H. A., Mohamad 'Asri Putra, N. A. 'Atiqah B., Yap, Y. H., & Abdul Rahman, E. K. (2019). Spatial analysis of road traffic accident hotspots: evaluation and validation of recent approaches using road safety audit. Journal of Transportation Safety & Security, 13(6), 575–604. doi:10.1080/19439962.2019.1658673.
[14] Al-Aamri, A. K., Hornby, G., Zhang, L.-C., Al-Maniri, A. A., & Padmadas, S. S. (2021). Mapping road traffic crash hotspots using GIS-based methods: A case study of Muscat Governorate in the Sultanate of Oman. Spatial Statistics, 42, 100458. doi:10.1016/j.spasta.2020.100458.
[15] Srikanth, Dr. L., Srikanth, I., & Arockiasamy, Dr. M. (2019). Identification of Traffic Accident Hotspots using Geographical Information System (GIS). International Journal of Engineering and Advanced Technology, 9(2), 4429–4438. doi:10.35940/ijeat.b3848.129219.
[16] Afolayan, A., Easa, S. M., Abiola, O. S., Alayaki, F. M., & Folorunso, O. (2022). GIS-Based Spatial Analysis of Accident Hotspots: A Nigerian Case Study. Infrastructures, 7(8), 103. doi:10.3390/infrastructures7080103.
[17] KriÄković, E., Lukić, T., Srejić, T., StojŠ¡ić-Milosavljević, A., Stojanović, V., & KriÄković, Z. (2024). Spatial-temporal and trend analysis of traffic accidents in AP Vojvodina (North Serbia). Open Geosciences, 16(1), 20220630. doi:10.1515/geo-2022-0630.
[18] Umair, M., Rana, I. A., & Lodhi, R. H. (2022). The impact of urban design and the built environment on road traffic crashes: A case study of Rawalpindi, Pakistan. Case Studies on Transport Policy, 10(1), 417–426. doi:10.1016/j.cstp.2022.01.002.
[19] Maurya, R. K., & Swain, J. B. (2022). Modeling and Analysis of Accident in an Urban Area (No. 9009). EasyChair, Wythenshawe, United Kingdom.
[20] Srikanth, L., & Srikanth, I. (2020). A Case Study on Kernel Density Estimation and Hotspot Analysis Methods in Traffic Safety Management. 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India. doi:10.1109/comsnets48256.2020.9027448.
[21] Ahmad, A., Hossain, K., & Hossain, M. (2020). Identification of Urban Traffic Accident Hotspot Zones Using GIS: A Case Study of Dhaka Metropolitan Area. Journal of Geographical Studies, 3(1), 36–42. doi:10.21523/gcj5.19030104.
[22] Alam, M. S., & Tabassum, N. J. (2023). Spatial pattern identification and crash severity analysis of road traffic crash hot spots in Ohio. Heliyon, 9(5), e16303. doi:10.1016/j.heliyon.2023.e16303.
[23] Mekonnen, A. A., Sipos, T., & Krizsik, N. (2023). Identifying Hazardous Crash Locations Using Empirical Bayes and Spatial Autocorrelation. ISPRS International Journal of Geo-Information, 12(3), 85. doi:10.3390/ijgi12030085.
[24] Lee, A. S., Lin, W. H., Gill, G. S., & Cheng, W. (2019). An enhanced empirical bayesian method for identifying road hotspots and predicting number of crashes. Journal of Transportation Safety & Security, 11(5), 562-578. doi:10.1080/19439962.2018.1450314.
[25] arirforoush, H., Bellalite, L., & Bénié, G. B. (2019). Spatial and Temporal Analysis of Seasonal Traffic Accidents. American Journal of Traffic and Transportation Engineering, 4(1), 7. doi:10.11648/j.ajtte.20190401.12.
[26] Hovenden, E., & Liu, G.-J. (2020). Use of Spatial Analysis Techniques to Identify Statistically Significant Crash Hot Spots in Metropolitan Melbourne. Journal of Road Safety, 31(4), 36–58. doi:10.33492/jrs-d-19-00249.
[27] Qalb, A., Arshad, H. S. H., Nawaz, M. S., & Hafeez, A. (2023). Risk reduction via spatial and temporal visualization of road accidents: a way forward for emergency response optimization in developing countries. International Journal of Injury Control and Safety Promotion, 30(2), 310–320. doi:10.1080/17457300.2022.2164312.
[28] Erenler, A. K., & Gümüş, B. (2019). Analysis of road traffic accidents in Turkey between 2013 and 2017. Medicina (Lithuania), 55(10), 679. doi:10.3390/medicina55100679.
[29] Alkhadour, W., Zraqou, J., Al-Helali, A., & Al-Ghananeem, S. (2021). Traffic Accidents Detection using Geographic Information Systems (GIS). International Journal of Advanced Computer Science and Applications, 12(4), 484-494. doi:10.14569/ijacsa.2021.0120462.
[30] Hazaymeh, K., Almagbile, A., & Alomari, A. H. (2022). Spatiotemporal Analysis of Traffic Accidents Hotspots Based on Geospatial Techniques. ISPRS International Journal of Geo-Information, 11(4), 260. doi:10.3390/ijgi11040260.
[31] Wang, Z. Z., Lu, Y. N., Zou, Z. H., Ma, Y. H., & Wang, T. (2022). Applying OHSA to Detect Road Accident Blackspots. International Journal of Environmental Research and Public Health, 19(24), 16970. doi:10.3390/ijerph192416970.
[32] Unsar, S., & Sut, N. (2009). General assessment of the occupational accidents that occurred in Turkey between the years 2000 and 2005. Safety Science, 47(5), 614-619. doi:10.1016/j.ssci.2008.08.001.
[33] Le, K. G., Liu, P., & Lin, L. T. (2020). Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam. Geo-spatial Information Science, 23(2), 153-164. doi:10.1080/10095020.2019.1683437.
[34] Vyshnavi, K. G., & Nalini, V. K. (2022). Machine Learning Algorithms for Road Accident Analysis and Forecasting. International Journal of Research in Engineering and Science, 10, 283–288.
[35] Venkat, A., Vijey, G. K., & Susan Thomas, I. (2020). Machine Learning Based Analysis for Road Accident Prediction. International Journal of Emerging Technology and Innovative Engineering, 6(2), 2394–6598.
[36] Megibaru, L., & Atnafu, B. (2019). Design a Machine Learning Model to Identify and Predict the Cause of Vehicle Accidents in East Gojjam, Amhara, Ethiopia. International Journal of Innovative Research in Science, Engineering and Technology, 8(12), 11856–11863.
[37] Guerra, A., Gadhiya, V., & Srisurin, P. (2022). Crash Prediction on Road Segments Using Machine Learning Methods. ASEAN Engineering Journal, 12(3), 27–37. doi:10.11113/AEJ.V12.17601.
[38] Dogru, N., & Subasi, A. (2018). Traffic accident detection using random forest classifier. 2018 15th Learning and Technology Conference (L&T). doi:10.1109/lt.2018.8368509.
[39] Sripuram, A., Jayasree., T., Vaishnavi, T., Reddy, V. R., & Mtech, P. C. (2022). Road Accident Analysis using Machine Learning. International Research Journal of Modernization in Engineering Technology and Science, 4(3), 1364-1371.
[40] Ulu, M., Kilic, E., & Türkan, Y. S. (2024). Prediction of Traffic Incident Locations with a Geohash-Based Model Using Machine Learning Algorithms. Applied Sciences, 14(2), 725. doi:10.3390/app14020725.
[41] Sridevi, N., Keerthana, M. V., Pal, M. V., Nikshitha, T. R., & Jyothi, P. (2020). Road accident analysis using machine learning. International Journal of Research in Engineering, Science and Management, 3(5), 859-861.
[42] Azimjonov, J., Özmen, A., & Varan, M. (2023). A vision-based real-time traffic flow monitoring system for road intersections. Multimedia Tools and Applications, 82(16), 25155–25174. doi:10.1007/s11042-023-14418-w.
[43] Torres, K. A. R., & Asor, J. R. (2021). Machine learning approach on road accidents analysis in Calabarzon, Philippines: An input to road safety management. Indonesian Journal of Electrical Engineering and Computer Science, 24(2), 993–1000. doi:10.11591/ijeecs.v24.i2.pp993-1000.
[44] RНоiÄka, J., BÄ›linová, Z., Korec, V., Cikhardtová, K., & Tichí½, T. (2019). Prediction of traffic accidents by using neural network. Archives of Transport System Telematics, 12(4), 22-26.
[45] Jadhav, A., Jadhav, S., Jalke, A., & Suryavanshi, K. (2020). Road accident analysis and prediction of accident severity using machine learning. International Research Journal of Engineering and Technology (IRJET), 7(12), 740-747.
[46] Santos, D., Saias, J., Quaresma, P., & Nogueira, V. B. (2021). Machine learning approaches to traffic accident analysis and hotspot prediction. Computers, 10(12), 157. doi:10.3390/computers10120157.
[47] Candefjord, S., Muhammad, A. S., Bangalore, P., & Buendia, R. (2021). On Scene Injury Severity Prediction (OSISP) machine learning algorithms for motor vehicle crash occupants in US. Journal of Transport and Health, 22. doi:10.1016/j.jth.2021.101124.
[48] Najafi Moghaddam Gilani, V., Hosseinian, S. M., Ghasedi, M., & Nikookar, M. (2021). Data-Driven Urban Traffic Accident Analysis and Prediction Using Logit and Machine Learning-Based Pattern Recognition Models. Mathematical Problems in Engineering, 2021, 1–11. doi:10.1155/2021/9974219.
[49] Yassin, S. S., & Pooja. (2020). Road accident prediction and model interpretation using a hybrid K-means and random forest algorithm approach. SN Applied Sciences, 2(9). doi:10.1007/s42452-020-3125-1.
[50] Rana, V., Joshi, H., Parmar, D., Jadhav, P., & Kanojiya, M. (2019). Road accident prediction using machine learning algorithm. International Research Journal of Engineering and Technology, 6(3), 3934-3496.
[51] ESRI. (2023). ArcGIS: Geographic Information System Company (ESRI), Redlands, United States. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview (accessed on March 2024).
[52] Harirforoush, H., & Bellalite, L. (2019). A new integrated GIS-based analysis to detect hotspots: A case study of the city of Sherbrooke. Accident Analysis and Prevention, 130, 62–74. doi:10.1016/j.aap.2016.08.015.
[53] Aghasi, N. H. M. (2019). Application of GIS for Urban Traffic Accidents: A Critical Review. Journal of Geographic Information System, 11(01), 82–96. doi:10.4236/jgis.2019.111007.
[54] Gedamu, W. T., Plank-Wiedenbeck, U., & Wodajo, B. T. (2024). A spatial autocorrelation analysis of road traffic crash by severity using Moran's I spatial statistics: A comparative study of Addis Ababa and Berlin cities. Accident Analysis & Prevention, 200, 107535. doi:10.1016/j.aap.2024.107535.
[55] Manap, N., Borhan, M. N., Yazid, M. R. M., Hambali, M. K. A., & Rohan, A. (2021). Identification of Hotspot Segments with a Risk of Heavy-Vehicle Accidents Based on Spatial Analysis at Controlled-Access Highway. Sustainability, 13(3), 1487. doi:10.3390/su13031487.
[56] Haybat, H., Zerenoğlu, H., & Özlü, T. (2022). Temporal and Spatial Analysis of Traffic Accidents: The Case of Bursa City. International Journal of Geography and Geography Education, 45, 404–423. doi:10.32003/igge.1016204.
[57] Seasons of the Year. (2024). Seasons in Pakistan. Seasons of the Year, Malakhovka, Russia. Available online: https://seasonsyear.com/Pakistan (accessed on March 2024).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.