Empirical Model of Unconsolidated Tephra Erosion: Verification and Application on Micro Catchment

F. Tata Yunita, Indratmo Soekarno, Joko Nugroho, Untung B. Santosa

Abstract


Erosion is an important process that shapes the earth's surface. Given the complexity of the process, efforts to understand it are essential. Over the last 50 years, numerous models of soil particle erosion by surface runoff emerged, some of which share similar forms and parameters. The differences lie in the coefficient values of the parameters, attributed to the characteristics of the soil material such as texture, structure, and organic matter content. However, these erosion models tend to underpredict in the case of new volcanic deposit erosion. The erosion model for unconsolidated tephra, proposed by Yunita, was developed through laboratory experiments using volcanic material from Merapi Volcano, Indonesia. Nevertheless, the model has not been implemented for other cases. Therefore, this study aims to verify the erosion model for volcanic material in other cases, explore the possibility of broader implementation, identify the factors that influence its accuracy, and determine the model’s limitations. To verify the model’s potential for broader application, we applied it to micro-scale catchments in St. Hellens (USA), Sakurajima (Japan), and a laboratory scale plot in Merapi (Indonesia). The verification yielded satisfactory results for all three cases, especially for new tephra deposits. In the case of St. Helens, the extrapolation of model coefficients was proven to still be applicable even for thicker tephra layers. However, the erosion prediction was overestimated for tephra layer deposits older than 1 year, as the erosion rate decreases over time due to the compaction and stabilization of the tephra layer. In the Sakurajima, the model was also suitable for predicting long-term erosion amounts (daily and monthly). Meanwhile, in Merapi, the model provided accurate predictions for slopes of 20º and 25º but was less accurate for 30º slopes, where the measured erosion was due to both erosion and slope failure. These verification results demonstrate the potential of applying the empirical erosion model to micro catchments with relatively homogenous slopes and tephra properties. The sensitivity test revealed that slope, runoff, rainfall intensity, and volcanic ash thickness are strongly influence the erosion rate. This study also simplified the volcanic ash erosion model as a function of slope (S0), runoff (q), and rainfall (i) by assuming the value of (1-τc/τ0) is equal to 1. Further study using GIS tools is required for its application on several catchments with heterogeneous characteristics.

 

Doi: 10.28991/CEJ-2024-010-07-02

Full Text: PDF


Keywords


Unconsolidated Tephra; Volcanic Material; Empirical Erosion Model; Verification.

References


Liu, B. Y., Nearing, M. A., Shi, P. J., & Jia, Z. W. (2000). Slope Length Effects on Soil Loss for Steep Slopes. Soil Science Society of America Journal, 64(5), 1759–1763. Portico. doi:10.2136/sssaj2000.6451759x.

Sun, T., Deng, L., Fei, K., Fan, X., Zhang, L., Ni, L., & Sun, R. (2021). Runoff characteristics and soil loss mechanism in the weathered granite area under simulated rainfall. Water (Switzerland), 13(23), 3453. doi:10.3390/w13233453.

Bullock, P. (2005). Climate Change Impacts. Encyclopedia of Soils in the Environment, 254–262, Academic Press, Cambridge, United States. doi:10.1016/b0-12-348530-4/00089-8.

Farhan, Y., Zregat, D., & Farhan, I. (2013). Spatial Estimation of Soil Erosion Risk Using RUSLE Approach, RS, and GIS Techniques: A Case Study of Kufranja Watershed, Northern Jordan. Journal of Water Resource and Protection, 05(12), 1247–1261. doi:10.4236/jwarp.2013.512134.

Kolli, M. K., Opp, C., & Groll, M. (2021). Estimation of soil erosion and sediment yield concentration across the Kolleru Lake catchment using GIS. Environmental Earth Sciences, 80(4), 161. doi:10.1007/s12665-021-09443-7.

Uber, M., Nord, G., Legout, C., & Cea, L. (2021). How do modeling choices and erosion zone locations impact the representation of connectivity and the dynamics of suspended sediments in a multi-source soil erosion model? Earth Surface Dynamics, 9(1), 123–144. doi:10.5194/esurf-9-123-2021.

Kilinç, H. Ç. (2018). Estimation of Rainfall Distribution Map of Turkey by IDW and Kriging Interpolation Method American Journal of Engineering Research (AJER). American Journal of Engineering Research, 7(6), 238–241.

Zhang, G.-H., Wang, L.-L., Tang, K.-M., Luo, R.-T., & Zhang, X. C. (2011). Effects of sediment size on transport capacity of overland flow on steep slopes. Hydrological Sciences Journal, 56(7), 1289–1299. doi:10.1080/02626667.2011.609172.

Ali, M., Sterk, G., Seeger, M., Boersema, M., & Peters, P. (2012). Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds. Hydrology and Earth System Sciences, 16(2), 591–601. doi:10.5194/hess-16-591-2012.

Aksoy, H., Unal, N. E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., Inci, S. B., Eris, E., & Pak, G. (2013). Laboratory experiments of sediment transport from bare soil with a rill. Hydrological Sciences Journal, 58(7), 1505–1518. doi:10.1080/02626667.2013.824085.

Feng, Q., Linyao, D., Jigen, L., Bei, S., Honghu, L., Jiesheng, H., & Hao, L. (2020). Equations for predicting interrill erosion on steep slopes in the Three Gorges Reservoir, China. Journal of Hydrology and Hydromechanics, 68(1), 51–59. doi:10.2478/johh-2019-0024.

Henorman, H. M., Tholibon, D. A., Nujid, M. M., Mokhtar, H., Rahim, J. A., & Saadon, A. (2022). The Functional Relationship of Sediment Transport under Various Simulated Rainfall Conditions. Fluids, 7(3), 107. doi:10.3390/fluids7030107.

Yunita, F. T., Soekarno, I., Nugroho, J., & Santosa, U. B. (2024). Empirical model for predicting erosion on slope covered by unconsolidated tephra. Sādhanā, 49(3). doi:10.1007/s12046-024-02456-5.

Miller, K. L., Szabó, T., Jerolmack, D. J., & Domokos, G. (2014). Quantifying the significance of abrasion and selective transport for downstream fluvial grain size evolution. Journal of Geophysical Research: Earth Surface, 119(11), 2412–2429. doi:10.1002/2014JF003156.

Novák-Szabó, T., Sipos, A. Á., Shaw, S., Bertoni, D., Pozzebon, A., Grottoli, E., Sarti, G., Ciavola, P., Domokos, G., & Jerolmack, D. J. (2018). Universal characteristics of particle shape evolution by bed-load chipping. Science Advances, 4(3), 4946. doi:10.1126/sciadv.aao4946.

Latif, D. O., Rifa’i, A., & Suryolelono, K. B. (2016). Chemical characteristics of volcanic ash in Indonesia for soil stabilization: Morphology and mineral content. GEOMATE Journal, 11(26), 2606-2610. doi:10.21660/2016.26.151120.

Shoji, D., Noguchi, R., Otsuki, S., & Hino, H. (2018). Classification of volcanic ash particles using a convolutional neural network and probability. Scientific Reports, 8(1), 8111. doi:10.1038/s41598-018-26200-2.

Kaminski, E., & Jaupart, C. (1998). The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. Journal of Geophysical Research: Solid Earth, 103(B12), 29759–29779. doi:10.1029/98jb02795.

Fiantis, D., Ginting, F. I., Gusnidar, Nelson, M., & Minasny, B. (2019). Volcanic Ash, insecurity for the people but securing fertile soil for the future. Sustainability (Switzerland), 11(11), 3072. doi:10.3390/su11113072.

Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., & Bloodworth, H. (2003). Effect of soil organic carbon on soil water retention. Geoderma, 116(1–2), 61–76. doi:10.1016/s0016-7061(03)00094-6.

Leavesley, G. H., Lusby, G. C., & Lichty, R. W. (1989). Infiltration and erosion characteristics of selected tephra deposits from the 1980 eruption of Mount St. Helens, Washington, USA. Hydrological Sciences Journal, 34(3), 339–353. doi:10.1080/02626668909491338.

Teramoto, Y., Shimokawa, E., & Jitousono, T. (2006). Effects of volcanic ash on the runoff process in Sakurajima volcano. Proceedings of the Interpraevent International Symposium" Disaster Mitigation of Debris Flows, Slope Failures and Landslides, 25-29 September, 2006, Universal Academy Press, Tokyo, Japan.

Duhita, A. D. P., Rahardjo, A. P., & Hairani, A. (2021). Effect of Slope on Infiltration Capacity and Erosion of Mount Merapi Slope Materials. Journal of the Civil Engineering Forum, 1000, 71–84. doi:10.22146/jcef.58350.

Collins, B. D., & Dunne, T. (1986). Erosion of tephra from the 1980 eruption of Mount St. Helens. Geological Society of America Bulletin, 97(7), 896–905. doi:10.1130/0016-7606(1986)97<896:EOTFTE>2.0.CO;2.

Teramoto, Y., Shimokawa, E., Ezaki, T., Nam, S., Jang, S. J., Kim, S. W., & Chun, K. W. (2017). Influence of spatial differences in volcanic activity on vegetation succession and surface erosion on the slope of Sakurajima volcano, Japan. Journal of forest and environmental science, 33(2), 136-146.

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. doi:10.1016/0022-1694(70)90255-6.

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194. doi:10.1080/02723646.1981.10642213.

Beakawi Al-Hashemi, H. M., & Baghabra Al-Amoudi, O. S. (2018). A review on the angle of repose of granular materials. Powder Technology, 330, 397–417. doi:10.1016/j.powtec.2018.02.003.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-07-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 F. Tata Yunita, Indratmo Soekarno, Joko Nugroho, Untung Budi Santosa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message