Strength and Deformability of Structural Steel for Use in Construction
Abstract
Doi: 10.28991/CEJ-2024-010-03-09
Full Text: PDF
Keywords
References
Vedyakov, I., Odessky, P.D., Konin, D.V., Egorova, A.A. (2015). Steel for rolling I-beams with parallel faces of shelves in Industrial and civil construction (PGS), No. 6, 30-35.
Odessky, P. D., & Kulik, D. V. (2005). New Generation Steel in Unique Structures. Internet Engineering, 1-176. (In Russian).
Shan, S., & Mou, B. (2024). Development of an innovative module-to-core wall connection for steel-framed modular high-rise buildings. Journal of Constructional Steel Research, 214, 108494. doi:10.1016/j.jcsr.2024.108494.
Gioncu, V., & Mazzolani, F. (2013). Seismic design of steel structures. CRC Press, London, United Kingdom. doi:10.1201/b16053.
Jin, J., Nagae, T., & Chung, Y. L. (2023). Seismic and collapse behavior of existing high-rise steel buildings under long-period earthquakes. Journal of Constructional Steel Research, 211. doi:10.1016/j.jcsr.2023.108151.
Grigorian, M., Sedighi, S., & Mohammadi, H. (2023). Plastic design of sustainable steel earthquake resistant structures. In Engineering Structures (Vol. 289). doi:10.1016/j.engstruct.2023.116178.
Gryniewicz, M., Roberts, M. J., & Davies, J. M. (2021). Testing and analysis of a full-scale steel-framed building including the consideration of structure-cladding interaction. Journal of Constructional Steel Research, 181. doi:10.1016/j.jcsr.2021.106611.
Baciu, F., Rusu-Casandra, A., & Pastramă, S. D. (2019). Low strain rate testing of tensile properties of steel. Materials Today: Proceedings, 32, 128–132. doi:10.1016/j.matpr.2020.03.469.
Vaz-Romero, A., Rodríguez-Martínez, J. A., & Arias, A. (2015). The deterministic nature of the fracture location in the dynamic tensile testing of steel sheets. International Journal of Impact Engineering, 86, 318–335. doi:10.1016/j.ijimpeng.2015.08.005.
Wang, W., & Kodur, V. (2020). Tensile test on steels at elevated temperatures. Material Properties of Steel in Fire Conditions, 3, 43–120. doi:10.1016/b978-0-12-813302-6.00003-5.
Rout, M., & Murugabalaji, V. (2023). Tensile properties variation along the thickness direction of hot rolled austenitic stainless steel. Materials Science and Engineering: A, 865. doi:10.1016/j.msea.2023.144643.
Yang, X. J., & Lin, F. (2023). Experimental and analytical studies on tensile behavior of kinked steel plates. Journal of Constructional Steel Research, 204. doi:10.1016/j.jcsr.2023.107874.
Gardnerand, L., & Nethrcott D. (2005). Designers’ Guide to Eurocode 3: Design of Steel Structures. General rules and rules for buildings. Institution of Civil Engineers (ICE), London, United Kingdom.
EN 1993-1-12. (2007). Eurocode 3: Design of steel structures –Part 1-12: Additional rules for the extension of EN 1993 up to steel grades s700. European Committee for Standardization, Brussels, Belgium.
Kulbayev, B., Lapin, V., Tuleyev, T., Aldakhov, S., Aldakhov, Y., & Ali, A. (2023). Hardness specification of structural steel used in the Republic of Kazakhstan. E3S Web of Conferences, 389. doi:10.1051/e3sconf/202338901002.
Kulbayev, B., Lapin, V., Shakhnovich, A., Tuleyev, T., Aldakhov, S., Aldakhov, Y., & Ali, A. (2023). Experimental Research of Impact Toughness of the Kazakhstani Construction Steel— Assessment of Compliance with the Provisions of 1993 Eurocode. Open Journal of Civil Engineering, 13(04), 664–676. doi:10.4236/ojce.2023.134044.
Kulbayev, B., Lapin, V., Shakhnovich, A., Tuleyev, T., Aldakhov, S., Aldakhov, Y., & Ali, A. (2023). Weld Joint Efficiency of the Kazakhstani Constructional Steel. Open Journal of Civil Engineering, 13(04), 802–813. doi:10.4236/ojce.2023.134052.
Vedyakov, I. I., Odesskiy, P. D., & Gurov, S. V. (2018). About regulation of materials in the new of rules SP 16.13330. Steel structures. Actualized edition of SNIP II-23-81. Industrial and civil construction, 8, 61-69.
Galperin, R. M., Nersesov, I. L., & Galperin, E. I. (1985). Seismic regime of Almaty for 1972–1982 years. Science, Moscow, Russia. (In Russian).
Sadykova, A. B., Silacheva, N. V., & Stepanenko, N. P. (2021). Seismic micro zoning of the territory of Almaty on a new methodological basis. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(445), 127–134. doi:10.32014/2021.2518-170X.18.
Kurskeev, A. K., Timush, A. V., Shatsilov, V. I., Sydykov, A., Gorbunov, P. N., & Sadykova, A. B. (2000). Seismic zoning of the Republic of Kazakhstan. Evero, Almaty, 219.
Lapin, V., Makish, N., Kassenov, K., Omarov, Z., & Kassenov, D. (2021). Instrumental records received in 11 storey steel frame building during a remote earthquake. E3S Web of Conferences, 258, 9078. doi:10.1051/e3sconf/202125809078.
Vedyakov, I. I., Suslov, L. S., Marisiuk, A. A., Kashin, O. V, & Novozhilov, M. V. (2023). Bearing capacity of a steel frame of a multi-storey modular building with consideration of the rigidity of quick-assembled connections. Earthquake Engineering. Constructions Safety, 6, 8–44. doi:10.37153/2618-9283-2023-6-8-44.
Nemchinov, Yu. I. (2015). Seismic Resistance of High-Rise Buildings. NIISK, Kyiv, Ukraine.
Fang, C., Wang, W., Qiu, C., Hu, S., MacRae, G. A., & Eatherton, M. R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. Journal of Constructional Steel Research, 191, 107172. doi:10.1016/j.jcsr.2022.107172.
Wasse, A. D., Dai, K., Wang, J., & Sharbati, R. (2024). State-of-the-Art Review: Seismic Design and Performance Assessment of Special Concentrically Braced Frames Developed for Complex Industrial Building Structures. International Journal of Steel Structures, 1-16. doi:10.1007/s13296-024-00815-w.
Pawar, G. D., & Dawari, V. B. (2023). Seismic design of bolted beam to column connections in tubular steel structures – A review. Materials Today: Proceedings, 1-6. doi:10.1016/j.matpr.2023.03.150.
Pu, W., & He, C. (2022). Seismic design framework for steel structures with hysteretic and viscous dampers. Journal of Constructional Steel Research, 194, 107330. doi:10.1016/j.jcsr.2022.107330.
Ras, A., & Boumechra, N. (2016). Seismic energy dissipation study of linear fluid viscous dampers in steel structure design. Alexandria Engineering Journal, 55(3), 2821–2832. doi:10.1016/j.aej.2016.07.012.
Mahjoubi, S., & Maleki, S. (2016). Seismic performance evaluation and design of steel structures equipped with dual-pipe dampers. Journal of Constructional Steel Research, 122, 25–39. doi:10.1016/j.jcsr.2016.01.023.
Gholizadeh, S., & Salajegheh, E. (2010). Optimal seismic design of steel structures by an efficient soft computing based algorithm. Journal of Constructional Steel Research, 66(1), 85–95. doi:10.1016/j.jcsr.2009.07.006.
DOI: 10.28991/CEJ-2024-010-03-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Vladimir Lapin
This work is licensed under a Creative Commons Attribution 4.0 International License.