Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning
Downloads
Doi: 10.28991/CEJ-2024-010-05-01
Full Text: PDF
[2] Cheng, L., Abraham, J., Trenberth, K. E., Boyer, T., Mann, M. E., Zhu, J., Wang, F., Yu, F., Locarnini, R., Fasullo, J., Zheng, F., Li, Y., Zhang, B., Wan, L., Chen, X., Wang, D., Feng, L., ... Lu, Y. (2024). New Record Ocean Temperatures and Related Climate Indicators in 2023. Advances in Atmospheric Sciences, 41(6), 1068–1082. doi:10.1007/s00376-024-3378-5.
[3] Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI) to Enhance Societal Readiness for El Niño's Impacts. International Journal of Disaster Risk Science, 11(3), 394–403. doi:10.1007/s13753-020-00275-w.
[4] L'Heureux, M. L., Tippett, M. K., Wheeler, M. C., Nguyen, H., Narsey, S., Johnson, N., Hu, Z. Z., Watkins, A. B., Lucas, C., Ganter, C., Becker, E., Wang, W., & Di Liberto, T. (2024). A Relative Sea Surface Temperature Index for Classifying ENSO Events in a Changing Climate. Journal of Climate, 37(4), 1197–1211. doi:10.1175/JCLI-D-23-0406.1.
[5] Prasetyo, Y., & Nabilah, F. (2017). Pattern Analysis of El Nino and la Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area. IOP Conference Series: Earth and Environmental Science, 98(1), 12041. doi:10.1088/1755-1315/98/1/012041.
[6] Varotsos, C., Sarlis, N. V., Mazei, Y., Saldaev, D., & Efstathiou, M. (2024). A Composite Tool for Forecasting El Niño: The Case of the 2023–2024 Event. Forecasting, 6(1), 187–203. doi:10.3390/forecast6010011.
[7] Silva, K. A., de Souza Rolim, G., & de Oliveira Aparecido, L. E. (2022). Forecasting El Niño and La Niña events using decision tree classifier. Theoretical and Applied Climatology, 148(3–4), 1279–1288. doi:10.1007/s00704-022-03999-5.
[8] Wang, G. G., Cheng, H., Zhang, Y., & Yu, H. (2023). ENSO analysis and prediction using deep learning: A review. Neurocomputing, 520, 216–229. doi:10.1016/j.neucom.2022.11.078.
[9] Bouach, A. (2024). Artificial neural networks for monthly precipitation prediction in north-west Algeria: a case study in the Oranie-Chott-Chergui basin. Journal of Water and Climate Change, 15(2), 582–592. doi:10.2166/wcc.2024.494.
[10] Van Oldenborgh, G. J., Hendon, H., Stockdale, T., L'Heureux, M., Coughlan De Perez, E., Singh, R., & Van Aalst, M. (2021). Defining El Nio indices in a warming climate. Environmental Research Letters, 16(4), 44003. doi:10.1088/1748-9326/abe9ed.
[11] Bochenek, B., & Ustrnul, Z. (2022). Machine Learning in Weather Prediction and Climate Analyses”Applications and Perspectives. Atmosphere, 13(2), 180. doi:10.3390/atmos13020180.
[12] Haggag, M., Siam, A. S., El-Dakhakhni, W., Coulibaly, P., & Hassini, E. (2021). A deep learning model for predicting climate-induced disasters. Natural Hazards, 107(1), 1009–1034. doi:10.1007/s11069-021-04620-0.
[13] Kumar, V., Azamathulla, H. Md., Sharma, K. V., Mehta, D. J., & Maharaj, K. T. (2023). The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management. Sustainability, 15(13), 10543. doi:10.3390/su151310543.
[14] Zhang, Y., Xie, D., Tian, W., Zhao, H., Geng, S., Lu, H., Ma, G., Huang, J., & Choy Lim Kam Sian, K. T. (2023). Construction of an Integrated Drought Monitoring Model Based on Deep Learning Algorithms. Remote Sensing, 15(3), 667. doi:10.3390/rs15030667.
[15] Apipattanavis, S., Ketpratoom, S., & Kladkempetch, P. (2018). Water Management in Thailand. Irrigation and Drainage, 67(1), 113–117. doi:10.1002/ird.2207.
[16] Maprasit, S., Pradabphetrat, P., Madmanang, R., Sathawong, S., Boonkaew, R., & Suksaroj, C. (2021). Physical-Chemical Properties Relationship of Pattani River and Implication for Water Quality Monitoring Study and Academic Service. Journal of Physics: Conference Series, 1835(1), 12112. doi:10.1088/1742-6596/1835/1/012112.
[17] Nur Amyliyana Wan Faizurie Zaidee, W., Shakir Mohd Saudi, A., Khairul Amri Kamarudin, M., Ekhwan Toriman, M., Juahir, H., Fahmy Abu, I., Mahmud Nur Zahidah Shafii, M., Nizam, K., & Elfithri, R. (2018). Flood Risk Pattern Recognition Using Chemometric Techniques Approach in Golok River, Kelantan. International Journal of Engineering & Technology, 7(3.14), 75. doi:10.14419/ijet.v7i3.14.168655.
[18] Hidayat, R., Ando, K., Masumoto, Y., & Luo, J. J. (2016). Interannual Variability of Rainfall over Indonesia: Impacts of ENSO and IOD and Their Predictability. IOP Conference Series: Earth and Environmental Science, 31(1), 12043. doi:10.1088/1755-1315/31/1/012043.
[19] Irwandi, H., Pusparini, N., Ariantono, J. Y., Kurniawan, R., Tari, C. A., & Sudrajat, A. (2018). The Influence of ENSO to the Rainfall Variability in North Sumatra Province. IOP Conference Series: Materials Science and Engineering, 335(1), 12055. doi:10.1088/1757-899X/335/1/012055.
[20] Ueangsawat, K., Nilsamranchit, S., & Jintrawet, A. (2015). Fate of ENSO Phase on Upper Northern Thailand, a Case Study in Chiang Mai. Agriculture and Agricultural Science Procedia, 5, 2–8. doi:10.1016/j.aaspro.2015.08.001.
[21] Ahmed, H. A. Y., & Mohamed, S. W. A. (2021). Rainfall Prediction using Multiple Linear Regressions Model. 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan. doi:10.1109/iccceee49695.2021.9429650.
[22] Shaker Reddy, P. C., & Sureshbabu, A. (2019). An Enhanced Multiple Linear Regression Model for Seasonal Rainfall Prediction. International Journal of Sensors, Wireless Communications and Control, 10(4), 473–483. doi:10.2174/2210327910666191218124350.
[23] Agboola, A., Gabriel, A., Aliyu, E., & Alese, B. (2014). Development Of A Fuzzy Logic Based Rainfall Prediction Model. International Journal of Engineering & Technology, 3(4), 427–435.
[24] Janarthanan, R., Balamurali, R., Annapoorani, A., & Vimala, V. (2021). Prediction of rainfall using fuzzy logic. Materials Today: Proceedings, 37, 959–963. doi:10.1016/j.matpr.2020.06.179.
[25] Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A. (2022). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204. doi:10.1016/j.mlwa.2021.100204.
[26] Rahman, A., Abbas, S., Gollapalli, M., Ahmed, R., Aftab, S., Ahmad, M., Khan, M. A., & Mosavi, A. (2022). Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors, 22(9), 3504. doi:10.3390/s22093504.
[27] Mohammadi, B. (2021). A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7(6), 98. doi:10.1007/s40899-021-00584-y.
[28] Singh, A. K., Kumar, P., Ali, R., Al-Ansari, N., Vishwakarma, D. K., Kushwaha, K. S., Panda, K. C., Sagar, A., Mirzania, E., Elbeltagi, A., Kuriqi, A., & Heddam, S. (2022). An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability, 14(13), 8209. doi:10.3390/su14138209.
[29] Hu, Z., Zhang, Y., Zhao, Y., Xie, M., Zhong, J., Tu, Z., & Liu, J. (2019). A Water Quality Prediction Method Based on the Deep LSTM Network Considering Correlation in Smart Mariculture. Sensors, 19(6), 1420. doi:10.3390/s19061420.
[30] Melesse, A. M., Khosravi, K., Tiefenbacher, J. P., Heddam, S., Kim, S., Mosavi, A., & Pham, B. T. (2020). River water salinity prediction using hybrid machine learning models. Water (Switzerland), 12(10), 1–21. doi:10.3390/w12102951.
[31] Rajabi-Kiasari, S., & Hasanlou, M. (2020). An efficient model for the prediction of SMAP sea surface salinity using machine learning approaches in the Persian Gulf. International Journal of Remote Sensing, 41(8), 3221–3242. doi:10.1080/01431161.2019.1701212.
[32] Mosavi, A., Ozturk, P., & Chau, K. (2018). Flood Prediction Using Machine Learning Models: Literature Review. Water, 10(11), 1536. doi:10.3390/w10111536.
[33] Motta, M., de Castro Neto, M., & Sarmento, P. (2021). A mixed approach for urban flood prediction using Machine Learning and GIS. International Journal of Disaster Risk Reduction, 56, 102154. doi:10.1016/j.ijdrr.2021.102154.
[34] Htike, K. K., & Khalifa, O. O. (2010). Rainfall forecasting models using focused time-delay neural networks. International Conference on Computer and Communication Engineering (ICCCE'10), Kuala Lumpur, Malaysia. doi:10.1109/iccce.2010.5556806.
[35] Hong, W. C. (2008). Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200(1), 41–57. doi:10.1016/j.amc.2007.10.046.
[36] Sivapragasam, C., Liong, S. Y., & Pasha, M. F. K. (2001). Rainfall and runoff forecasting with SSA-SVM approach. Journal of Hydroinformatics, 3(3), 141–152. doi:10.2166/hydro.2001.0014.
[37] Feng, Q., Wen, X., & Li, J. (2015). Wavelet Analysis-Support Vector Machine Coupled Models for Monthly Rainfall Forecasting in Arid Regions. Water Resources Management, 29(4), 1049–1065. doi:10.1007/s11269-014-0860-3.
[38] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019. doi:10.1109/TNNLS.2021.3084827.
[39] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235–1270. doi:10.1162/neco_a_01199.
[40] Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. doi:10.1007/s10462-020-09838-1.
[41] Van, S. P., Le, H. M., Thanh, D. V., Dang, T. D., Loc, H. H., & Anh, D. T. (2020). Deep learning convolutional neural network in rainfall-runoff modelling. Journal of Hydroinformatics, 22(3), 541–561. doi:10.2166/hydro.2020.095.
[42] Haidar, A., & Verma, B. (2018). Monthly Rainfall Forecasting Using One-Dimensional Deep Convolutional Neural Network. IEEE Access, 6, 69053–69063. doi:10.1109/ACCESS.2018.2880044.
[43] Van Viet, L. (2021). Development of a new ENSO index to assess the effects of ENSO on temperature over southern Vietnam. Theoretical and Applied Climatology, 144(3–4), 1119–1129. doi:10.1007/s00704-021-03591-3.
[44] Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. doi:10.1080/10408340500526766.
[45] Mardia, K. V. (1976). Linear circular correlation coefficients and rhythmometry. Biometrika, 63(2), 403–405. doi:10.2307/2335637.
[46] Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524. doi:10.1016/j.asoc.2019.105524.
[47] Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106, 234–240. doi:10.1016/j.sbspro.2013.12.027.
[48] Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427. doi:10.1016/j.ijforecast.2020.06.008.
[49] Medsker, L. R., & Jain, L. (2001). Recurrent neural networks. Design and Applications, 5(64-67), 2.
[50] Lin, Y., Yan, Y., Xu, J., Liao, Y., & Ma, F. (2021). Forecasting stock index price using the CEEMDAN-LSTM model. North American Journal of Economics and Finance, 57, 101421. doi:10.1016/j.najef.2021.101421.
[51] Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. doi:10.1016/j.ejor.2017.11.054.
[52] Apaydin, H., Feizi, H., Sattari, M. T., Colak, M. S., Shamshirband, S., & Chau, K. W. (2020). Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. Water, 12(5), 1500. doi:10.3390/w12051500.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.