Seismic Performance of Infilled Reinforced Concrete Frame with Crumb Rubber Mortar Wall Panel

Kritsada Chayaboot, Maetee Boonpichetvong, Tanyada Pannachet, Vanchai Sata, Chatpan Chintanapakdee

Abstract


In this paper, the seismic performance of reinforced concrete (RC) frames with crumb rubber mortar wall panels is reported. The tests of the crumb rubber mortar were conducted to obtain model parameters for equivalent diagonal compression struts. With a higher percentage of sand replacement by crumb rubber, the unit weight, the compressive strength, the tensile strength, and the modulus of elasticity of the crumb rubber cement mortar are decreased. Nonlinear pushover analysis of a simple frame shows that the RC frame with a wall panel with less crumb rubber demonstrates lower lateral deformation ability. The failure modes are affected by the amount of crumb rubber and are dependent on the modeling choice of the equivalent compression strut as the wall panel representative. Finally, the seismic performance of the RC building was studied by the equivalent static approach to explore the influence of the crumb rubber mortar wall panels on internal forces and deformations of the frame. With a higher percentage of crumb rubber, the weight of the infill wall panels and the overall weight of the building are reduced, which meets lower seismic base shear demand. This benefit is, however, traded off with higher lateral deformation and also higher inter-story drift of the studied building frames.

 

Doi: 10.28991/CEJ-2024-010-02-09

Full Text: PDF


Keywords


Nonlinear Analysis; Seismic Analysis; Infill Wall Panel; Crumb Rubber; Cement Mortar.

References


Fazli, A., & Rodrigue, D. (2020). Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A review. Journal of Composites Science, 4(3), 103. doi:10.3390/jcs4030103.

Nadal, M., Rovira, J., Díaz-Ferrero, J., Schuhmacher, M., & Domingo, J. L. (2016). Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks. Environment International, 97, 37–44. doi:10.1016/j.envint.2016.10.016.

Sidhu, K. S., Keeslar, F. L., & Warner, P. O. (2006). Potential health risks related to tire fire smoke. Toxicology International, 13(1), 1–17.

Rogachuk, B. E., & Okolie, J. A. (2023). Waste tires based biorefinery for biofuels and value-added materials production. Chemical Engineering Journal Advances, 14, 100476. doi:10.1016/j.ceja.2023.100476.

Valentini, F., & Pegoretti, A. (2022). End-of-life options of tyres. A review. Advanced Industrial and Engineering Polymer Research, 5(4), 203–213. doi:10.1016/j.aiepr.2022.08.006.

Khaloo, A. R., Dehestani, M., & Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Management, 28(12), 2472–2482. doi:10.1016/j.wasman.2008.01.015.

Gupta, T., Chaudhary, S., & Sharma, R. K. (2016). Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. Journal of Cleaner Production, 112, 702–711. doi:10.1016/j.jclepro.2015.07.081.

Sofi, A. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691–2700. doi:10.1016/j.asej.2017.08.007.

Liu, H., Wang, X., Jiao, Y., & Sha, T. (2016). Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials, 9(3), 172. doi:10.3390/ma9030172.

Chen, H., Li, D., Ma, X., Zhong, Z., & Abd-Elaal, E. S. (2023). Compressive strength prediction of crumb rubber mortar based on mesoscale model. Engineering Failure Analysis, 152, 107485. doi:10.1016/j.engfailanal.2023.107485.

Wongsa, A., Sata, V., Nematollahi, B., Sanjayan, J., & Chindaprasirt, P. (2018). Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. Journal of Cleaner Production, 195, 1069–1080. doi:10.1016/j.jclepro.2018.06.003.

Shahrul, S., Mohammed, B. S., Wahab, M. M. A., & Liew, M. S. (2021). Mechanical properties of crumb rubber mortar containing nano-silica using response surface methodology. Materials, 14(19), 5496. doi:10.3390/ma14195496.

Sukontasukkul, P. (2009). Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Construction and Building Materials, 23(2), 1084–1092. doi:10.1016/j.conbuildmat.2008.05.021.

Al-Fakih, A., Mohammed, B. S., Al-Osta, M. A., & Assaggaf, R. (2022). Evaluation of the mechanical performance and sustainability of rubberized concrete interlocking masonry prism. Journal of Materials Research and Technology, 18, 4385–4402. doi:10.1016/j.jmrt.2022.04.115.

Bewick, B. T., Salim, H., Saucier, A., & Jackson, C. (2010). Crumb rubber-concrete panels under blast loads. Air Force Research Laboratory, Materials and Manufacturing Directorate, 1-14.

Naito, C., States, J., Jackson, C., & Bewick, B. (2014). Assessment of Crumb Rubber Concrete for Flexural Structural Members. Journal of Materials in Civil Engineering, 26(10), 04014075. doi:10.1061/(asce)mt.1943-5533.0000986.

Rigotti, D., & Dorigato, A. (2022). Novel uses of recycled rubber in civil applications. Advanced Industrial and Engineering Polymer Research, 5(4), 214–233. doi:10.1016/j.aiepr.2022.08.005.

Wararuksajja, W., Srechai, J., Leelataviwat, S., Sungkamongkol, T., & Limkatanyu, S. (2021). Seismic design method for preventing column shear failure in reinforced concrete frames with infill walls. Journal of Building Engineering, 44, 102963. doi:10.1016/j.jobe.2021.102963.

Crisafulli, F. J. (1997). Seismic behavior of reinforced concrete structures with masonry infills. PhD Thesis., University of Canterbury Christchurch, Christchurch, New Zealand.

Angel, R. (1994). Behavior of reinforced concrete frames with masonry infills. Ph.D. Thesis, University of Illinois Urbana-Champaign, Champaign–Urbana, USA.

Netrattana, C. (2013). Evaluation of reinforced concrete buildings under earthquakes considering effects of masonry infills. Ph.D. Thesis, Chulalongkorn University, Bangkok, Thailand. doi:10.14457/CU.the.2013.1347.

Khan, N. A., Monti, G., Nuti, C., & Vailati, M. (2021). Effects of infills in the seismic performance of an RC factory building in Pakistan. Buildings, 11(7), 276. doi:10.3390/buildings11070276.

Okail, H., Abdelrahman, A., Abdelkhalik, A., & Metwaly, M. (2016). Experimental and analytical investigation of the lateral load response of confined masonry walls. HBRC Journal, 12(1), 33–46. doi:10.1016/j.hbrcj.2014.09.004.

Mehrabi, A. B., Benson Shing, P., Schuller, M. P., & Noland, J. L. (1996). Experimental Evaluation of Masonry-Infilled RC Frames. Journal of Structural Engineering, 122(3), 228–237. doi:10.1061/(asce)0733-9445(1996)122:3(228).

Mahmud, E., Bonev, Z., & Abdulahad, E. (2019). Nonlinear seismic analysis of masonry infilled RC frame structures. Gradjevinski Materijali i Konstrukcije, 62(1), 17–25. https://doi.org/10.5937/grmk1901017m.

Grubišić, M., Kalman Šipoš, T., Grubišić, A., & Pervan, B. (2023). Testing of Damaged Single-Bay Reinforced Concrete Frames Strengthened with Masonry Infill Walls. Buildings, 13(4), 1021. doi:10.3390/buildings13041021.

Teguh, M. (2017). Experimental Evaluation of Masonry Infill Walls of RC Frame Buildings Subjected to Cyclic Loads. Procedia Engineering, 171, 191–200. doi:10.1016/j.proeng.2017.01.326.

Ozyurt, M. Z., & Almannaa, W. (2024). Effect of modelling the infill wall as a strut element on the structure behaviour. Journal of Radiation Research and Applied Sciences, 17(1), 100755. doi:10.1016/j.jrras.2023.100755.

Wararuksajja, W., Srechai, J., & Leelataviwat, S. (2020). Seismic design of RC moment-resisting frames with concrete block infill walls considering local infill-frame interactions. Bulletin of Earthquake Engineering, 18(14), 6445–6474. doi:10.1007/s10518-020-00942-9.

Tanjung, J., Ismail, F. A., Maidiawati, Nur, O. F., & Mahlil. (2019). Experimental study for evaluating the seismic performance of RC frame structure with partially infilled by brick masonry. International Journal of GEOMATE, 16(57), 189–194. doi:10.21660/2019.57.8340.

Constantinescu, S. (2021). Study on the behavior of a high reinforced concrete building with different kinds of partitioning masonry walls. IOP Conference Series: Earth and Environmental Science, 664(1), 12050. doi:10.1088/1755-1315/664/1/012050.

ASCE/SEI41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414859.

FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency (FEMA), Washington, United States.

Crisafulli, F. J., & Carr, A. J. (2007). Proposed macro-model for the analysis of infilled frame structures. Bulletin of the New Zealand Society for Earthquake Engineering, 40(2), 69–77. doi:10.5459/bnzsee.40.2.69-77.

Srechai, J., Leelataviwat, S., Wararuksajja, W., & Limkatanyu, S. (2022). Multi-strut and empirical formula-based macro modeling for masonry infilled RC frames. Engineering Structures, 266, 114559. doi:10.1016/j.engstruct.2022.114559.

Roosta, S., & Liu, Y. (2022). Development of a Macro-Model for concrete masonry infilled frames. Engineering Structures, 257, 114075. doi:10.1016/j.engstruct.2022.114075.

Van, T. C., Lau, T. L., & Mohamed Nazri, F. (2022). Macro-modeling approach incorporating fiber plastic hinge for reinforced concrete frames with masonry infill. Engineering Structures, 251, 113421. doi:10.1016/j.engstruct.2021.113421.

Crisafulli, F. J., Carr, A. J., & Park, R. (2000). Analytical modelling of infilled frame structures - A general review. Bulletin of the New Zealand Society for Earthquake Engineering, 33(1), 30–47. doi:10.5459/bnzsee.33.1.30-47.

Smyrou, E., Blandon, C., Antoniou, S., Pinho, R., & Crisafulli, F. (2011). Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering, 9(5), 1519–1534. doi:10.1007/s10518-011-9262-6.

Bourahla, N. (2015). Equivalent Static Analysis of Structures Subjected to Seismic Actions. Encyclopedia of Earthquake Engineering, Springer, Berlin, Germany. doi:10.1007/978-3-642-35344-4_169.

DPT 1301/1302-61. (2018). Earthquake Resistant Design code DPT 1301/1302-61. Department of Public Works and Town & Country Planning, Ministry of Interior, Bangkok, Thailand.

ASTM C109/C109M-01. (2017). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-01.

ASTM C192/C192M-19. (2020). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-19.

TMS 402/602-16. (2016). Building Code Requirements for Masonry Structures. The Masonry Society, Longmont, United States.

Falcão Moreira, R., Varum, H., & Castro, J. M. (2023). Influence of Masonry Infill Walls on the Seismic Assessment of Non-Seismically Designed RC Framed Structures. Buildings, 13(5). doi:10.3390/buildings13051148.

Los Santos - Ortega, J., Fraile - García, E., & Ferreiro - Cabello, J. (2023). Methodology for the environmental analysis of mortar doped with crumb rubber from end-of-life tires. Construction and Building Materials, 399, 132519. doi:10.1016/j.conbuildmat.2023.132519.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Kritsada Chayaboot, Maetee Boonpichetvong, Tanyada Pannachet, Vanchai Sata, Chatpan Chintanapakdee

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message