Sustainable Concrete Production: Utilizing Cow Dung Ash and Corn Stalk Ash as Eco-Friendly Alternatives

Aakash Jamwal, Akhilesh Nautiyal, Kanwarpreet Singh, Shamshad Alam, Nimer Ali Alselami, Khaled M. Aati


This study aims to determine whether it is feasible to replace conventional materials used in manufacturing concrete with waste materials, namely cow dung ash and corn stalk ash. This study proposes to assess the possibility of using these agricultural by-products to improve the sustainability of concrete while simultaneously tackling the environmental issues related to the manufacture of conventional concrete. The research aims to assess the mechanical qualities, optimize the mix proportions, and examine the ecological implications of using these substitute materials. This research aims to mitigate environmental challenges like carbon dioxide emissions, resource depletion, and the accumulation of agricultural waste by combining agricultural waste and lowering dependency on traditional cement. The study investigates the use of cow dung ash (CDA) and corn stalk ash (CSA) as alternatives for conventional Portland cement (OPC) in mortar mixes at varying quantities, ranging from 5% to 25% CDA and 2.5% to 10% CSA. Chemical composition reveals that CDA and CSA predominantly comprise O, Mg, Al, Si, P, K, and Ca. The workability, hardened characteristics, and microstructure of CDA and CSA were assessed. Increasing CDA and CSA percentages reduced mortar workability; nevertheless, replacing 8% to 10% CDA and 7.5% CSA maintained compressive, tensile, and flexural strengths comparable to control mixes. However, more significant CDA and CSA proportions resulted in lower mortar strength. For example, 10% CDA-enriched mortar had a compressive strength of 31.77 N/mm2, a tensile strength of 3.42 N/mm2, and a flexural strength of 3.61 N/mm2, whereas 7.5% CSA-enriched mortar had a compressive strength of 28.4 N/mm2, a tensile strength of 3.04 N/mm2, and a flexural strength of 3.7 N/mm2. According to the findings, CDA and CSA can replace OPC by up to 10% and 7.5% in mortar manufacturing, making cementitious material alternatives viable.


Doi: 10.28991/CEJ-SP2024-010-02

Full Text: PDF


Cow Dung Ash; Corn Stalk Ash; Strength; Microstructural.


Worku, M. A., Taffese, W. Z., Hailemariam, B. Z., & Yehualaw, M. D. (2023). Cow Dung Ash in Mortar: An Experimental Study. Applied Sciences, 13(10), 1–15. doi:10.3390/app13106218.

GCCA. (2021). Concrete Future - Roadmap to Net Zero. Global Cement and Concrete Association (GCCA), London, United Kingdom. Available online: (accessed on April 2024).

Lehne, J., & Preston, F. (2018) Report: Making concrete change. Innovation in Low-carbon Cement and Concrete. Chatham House, London, United Kingdom.

Cosentino, I., Liendo, F., Arduino, M., Restuccia, L., Bensaid, S., Deorsola, F., & Ferro, G. A. (2020). Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry. Procedia Structural Integrity, 26, 155–165. doi:10.1016/j.prostr.2020.06.019.

Khankhaje, E., Kim, T., Jang, H., Kim, C.-S., Kim, J., & Rafieizonooz, M. (2023). Properties of pervious concrete incorporating fly ash as partial replacement of cement: A review. Developments in the Built Environment, 14, 100130. doi:10.1016/j.dibe.2023.100130.

Yehualaw, M. D., Alemu, M., Hailemariam, B. Z., Vo, D.-H., & Taffese, W. Z. (2022). Aquatic Weed for Concrete Sustainability. Sustainability, 14(23), 15501. doi:10.3390/su142315501.

Reta, Y., & Mahto, S. (2019). Experimental investigation on coffee husk ash as a partial replacement of cement for C-25 concrete. Cikitusi Journal for Multidisciplinary Research, 6(0975-6876), 152-158.

Yang, K. H., Jung, Y. B., Cho, M. S., & Tae, S. H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. doi:10.1016/j.jclepro.2014.03.018.

Endale, S. A., Taffese, W. Z., Vo, D.-H., & Yehualaw, M. D. (2022). Rice Husk Ash in Concrete. Sustainability, 15(1), 137. doi:10.3390/su15010137.

Zeybek, Ö., Özkılıç, Y. O., Karalar, M., Çelik, A. İ., Qaidi, S., Ahmad, J., Burduhos-Nergis, D. D., & Burduhos-Nergis, D. P. (2022). Influence of Replacing Cement with Waste Glass on Mechanical Properties of Concrete. Materials, 15(21), 7513. doi:10.3390/ma15217513.

Ongwen, N. O., & Alruqi, A. B. (2023). Acoustics of Compressed Earth Blocks Bound Using Sugarcane Bagasse Ash and Water Hyacinth Ash. Applied Sciences, 13(14), 8223. doi:10.3390/app13148223.

Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Meskhi, B., Shilov, A. A., Varavka, V., Evtushenko, A., Özkılıç, Y. O., Aksoylu, C., & Karalar, M. (2022). Composition Component Influence on Concrete Properties with the Additive of Rubber Tree Seed Shells. Applied Sciences, 12(22), 11744. doi:10.3390/app122211744.

Taffese, W. Z. (2018). Suitability Investigation of Recycled Concrete Aggregates for Concrete Production: An Experimental Case Study. Advances in Civil Engineering, 2018, 1–11. doi:10.1155/2018/8368351.

Basaran, B., Kalkan, I., Aksoylu, C., Özkılıç, Y. O., & Sabri, M. M. S. (2022). Effects of Waste Powder, Fine and Coarse Marble Aggregates on Concrete Compressive Strength. Sustainability (Switzerland), 14(21), 14388. doi:10.3390/su142114388.

Karalar, M., Bilir, T., Çavuşlu, M., Özkiliç, Y. O., & Sabri Sabri, M. M. (2022). Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate. Frontiers in Materials, 9. doi:10.3389/fmats.2022.1064604.

Shcherban’, E. M., Stel’makh, S. A., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Shilov, A. A., Chernil’nik, A., Özkılıç, Y. O., & Aksoylu, C. (2022). Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers. Applied Sciences, 12(22), 11734. doi:10.3390/app122211734.

Çelik, A. İ., Özkılıç, Y. O., Zeybek, Ö., Karalar, M., Qaidi, S., Ahmad, J., Burduhos-Nergis, D. D., & Bejinariu, C. (2022). Mechanical Behavior of Crushed Waste Glass as Replacement of Aggregates. Materials, 15(22), 8093. doi:10.3390/ma15228093.

Karalar, M., Özkılıç, Y. O., Aksoylu, C., Sabri Sabri, M. M., Beskopylny, A. N., Stel’makh, S. A., & Shcherban’, E. M. (2022). Flexural behavior of reinforced concrete beams using waste marble powder towards application of sustainable concrete. Frontiers in Materials, 9. doi:10.3389/fmats.2022.1068791.

Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. Waste Management, 27(12), 1870–1876. doi:10.1016/j.wasman.2006.07.026.

Samson, D., & Moses, O. T. (2014). Investigating the Pozzolanic Potentials of Cowdung Ash in Cement Paste and Mortars. Iiste, 6(8), 110–117.

Sruthy B, Anisha G Krishnan, Gibi Miriyam Mathew, & Sruthi G Raj. (2017). An Experimental Investigation on Strength of Concrete Made with Cow Dung Ash and Glass Fibre. International Journal of Engineering Research & Technology, 6(3), 492–495.

Rayaprolu, V. S. R. P. K., & Raju, P. P. (2012). Incorporation of Cow dung Ash to Mortar and Concrete. International Journal of Engineering Research and Applications, 2(3), 580–584.

Indhiradevi, P., Manikandan, P., Rajkumar, K., & Logeswaran, S. (2021). A comparative study on usage of cowdung ash and wood ash as partial replacement in flyash brick. Materials Today: Proceedings, 37, 1190–1194. doi:10.1016/j.matpr.2020.06.355.

Ojedokun, O. (2014). Cow Dung Ash (CDA) as Partial Replacement of Cementing Material in the Production of Concrete. British Journal of Applied Science & Technology, 4(24), 3445–3454. doi:10.9734/bjast/2014/6447.

Venkatasubramanian, C., Muthu, D., Aswini, G., Nandhini, G., & Muhilini, K. (2017). Experimental studies on effect of cow dung ash (pozzolanic binder) and coconut fiber on strength properties of concrete. IOP Conference Series: Earth and Environmental Science, 80(1), 012012. doi:10.1088/1755-1315/80/1/012012.

Ramachandran, D., George, R. P., Vishwakarma, V., Anbarasan, N., Viswanathan, K., Kumari, K., & Venkatachalapathy, V. (2015). Studies of strength, durability and microstructural properties of cow dung ash modified concrete. 2nd RN Raikar Memorial International Conference and Banthia-Basheer International Symposium on Advances in Science and Technology of Concrete, 18-19 December, 2015, Mumbai, India.

Dhaka, J. K., & Roy, S. (2015). Utilization of fly ash and cow dung ash as partial replacement of cement in concrete. International Journal of Civil & Structural Engineering, 6(1), 34-39. doi:10.6088/ijcser.6004.

Ramachandran, D., Vishwakarma, V., & Viswanathan, K. (2018). Detailed studies of cow dung ash modified concrete exposed in fresh water. Journal of Building Engineering, 20, 173-178. doi:10.1016/j.jobe.2018.07.008.

Kumar, S. S., & Anbuchezian, A. (2018). An experimental study of fully replacement of cow dung ash (CDA), alumina and lime for cement. International Research Journal of Engineering and Technology, 5(05), 588–590.

Avinash, A., & Murugesan, A. (2017). Chemometric analysis of cow dung ash as an adsorbent for purifying biodiesel from waste cooking oil. Scientific Reports, 7(1), 1–8. doi:10.1038/s41598-017-09881-z.

Magudeaswaran, P., & AS, H. (2018). Development of Eco Brick and Concrete with the partial replacement of cow dung. Development, International Journal of Science and Engineering Research, 6(5), 2249–254.

Yalley, P. P. K., & Manu, D. (2013). Strength and durability properties of cow dung stabilized earth brick. Civil and Environmental Research, 3(13), 117-125.

Vishwakarma, V., & Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review. Construction and Building Materials, 162, 96–103. doi:10.1016/j.conbuildmat.2017.11.174.

Sivakumar, G., & Amutha, K. (2012). Studies on silica obtained from cow dung ash. Advanced Materials Research, 584, 470–473. doi:10.4028/

Sahin, S., Kocaman, B., Orung, I., & Memis, S. (2006). Replacing Cattle Manure Ash as Cement into Concrete. Journal of Applied Sciences, 6(13), 2840-2842.

Jau, W. C., & Tsay, D. S. (1998). A study of the basic engineering properties of slag cement concrete and its resistance to seawater corrosion. Cement and Concrete Research, 28(10), 1363–1371. doi:10.1016/S0008-8846(98)00117-3.

Juimo Tchamdjou, W. H., Cherradi, T., Abidi, M. L., & Pereira-de-Oliveira, L. A. (2018). Mechanical properties of lightweight aggregates concrete made with Cameroonian volcanic scoria: Destructive and non-destructive characterization. Journal of Building Engineering, 16, 134–145. doi:10.1016/j.jobe.2018.01.003.

Vishwakarma, V., & Ramachandran, D. (2016). Microbial deterioration effect of cow dung ash modified concrete in freshwater environments. Concrete Research Letters, 7(3), 84–97.

Millogo, Y., Aubert, J. E., Séré, A. D., Fabbri, A., & Morel, J. C. (2016). Earth blocks stabilized by cow-dung. Materials and Structures/Materiaux et Constructions, 49(11), 4583–4594. doi:10.1617/s11527-016-0808-6.

Zhou, S., Zhang, X., & Chen, X. (2012). Pozzolanic activity of feedlot biomass (cattle manure) ash. Construction and Building Materials, 28(1), 493–498. doi:10.1016/j.conbuildmat.2011.09.003.

Zhou, S., Zhang, S., Shen, J., & Guo, W. (2019). Effect of cattle manure ash’s particle size on compression strength of concrete. Case Studies in Construction Materials, 10, e00215. doi:10.1016/j.cscm.2018.e00215.

Zhou, S., Tang, W., Xu, P., & Chen, X. (2015). Effect of cattle manure ash on strength, workability and water permeability of concrete. Construction and Building Materials, 84, 121–127. doi:10.1016/j.conbuildmat.2015.03.062.

Kumar Yadav, A., Gaurav, K., Kishor, R., & Suman, S. K. (2017). Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. International Journal of Pavement Research and Technology, 10(3), 254–261. doi:10.1016/j.ijprt.2017.02.001.

Manjunath Patel, G. C., Gupta, K., Chate, G., Parappagoudar, M. B., Jayashankar, S. M., & Daivagna, U. M. (2019). Performance analysis of cow dung as an eco-friendly additive material for sustainable moulding and casting. China Foundry, 16(6), 423–429. doi:10.1007/s41230-019-9078-6.

Thakur, D., Thakur, S., Pal, N., Kasbe, P., & Heggond, S. (2019). Effect of Cow Dung on Physical Properties of Concrete. International Research Journal of Engineering and Technology (IRJET), 6(3), 4470-4472.

Lakshmi, D. S., Mallikarjuna, M., & Basha, K. S. (2021). Mechanical Properties of Concrete by Using Fly Ash and Cow Dung Ash. International Journal of Innovative Research in Science, Engineering and Technology, 10(6), 5896–5906. doi:10.15680/IJIRSET.2021.1006013.

Kumar, A. (2018). Partial Replacement Of Cement With Fly Ash And Cow Dung Ash By Using Quarry Dust As A Fine Aggregate Aman kumar. International Journal of Engineering Science Invention, 7(10), 1–11.

Mbereyaho, L., Irafasha, D., Habumugisha, E., & Musabirema, J. (2020). Assessment of Cohesive Soil - Cow Dung Mortar Properties as Replacement of Cement Mortar for Simple Plastering Works. Rwanda Journal of Engineering, Science, Technology and Environment, 3(2). doi:10.4314/rjeste.v3i2.6.

Aiyedun, P. O., Timothy Owoeye, F., Anyanwu, B., Olokode, O., Aiyedun, P., Raheem, D., & Owoeye, F. (2012). Production and characterization of clay-cow dung insulating fire-bricks. Global Advanced Research Journal of Engineering, Technology and Innovation, 1(7), 162–167.

Vasu, K. (2019). Experimental investigation on partial replacement of cement with cow dung ash. IJARIIE, 5(3), 18- 27.

Meena, V., Sood, H. (2021). A Review on Partial Replacement of Cement with Cow Dung Ash (CDA) in Concrete. Journal of Emerging Technologies and Innovative Research, 8(12), 189–192.

Rumman, R., Kamal, M. R., Bediwy, A., & Alam, M. S. (2023). Partially burnt wood fly ash characterization and its application in low-carbon mortar and concrete. Construction and Building Materials, 402, 132946. doi:10.1016/j.conbuildmat.2023.132946.

Hakeem, I. Y., Amin, M., Agwa, I. S., Rizk, M. S., & Abdelmagied, M. F. (2023). Effect of using sugarcane leaf ash and granite dust as partial replacements for cement on characteristics of ultra-high performance concrete. Case Studies in Construction Materials, 19, e02266. doi:10.1016/j.cscm.2023.e02266.

Padavala, S. S. A. B., Dey, S., Veerendra, G. T. N., & Phani Manoj, A. V. (2024). Experimental study on concrete by partial replacement of cement with fly ash and coarse aggregates with palm kernel shells (Pks) and with addition of hybrid fibers. Chemistry of Inorganic Materials, 2, 100033. doi:10.1016/j.cinorg.2024.100033.

Balamuralikrishnan, R., Al-Balushi, R., & Kaleem, A. (2023). An Investigation on Eco Friendly Self-Compacting Concrete Using Spent Catalyst and Development of Structural Elements. Civil Engineering Journal, 9(5), 1132-1159. doi:10.28991/CEJ-2023-09-05-08.

Raheem, A. A., Adedokun, S. I., Adeyinka, E. A., & Adewole, B. V. (2017). Application of Corn Stalk Ash as Partial Replacement for Cement in the Production of Interlocking Paving Stones. International Journal of Engineering Research in Africa, 30, 85–93. doi:10.4028/

Hamdy, Y., Elshazly, M., Salem, S., & Elsaid, A. (2021). The Impact of Using Cornstalk Ash on the Compressive Strength Concrete Mixes. International Journal of Scientific & Engineering Research, 12(1), 419–421.

Aksoğan, O., Binici, H., & Ortlek, E. (2016). Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Construction and Building Materials, 106, 253–263. doi:10.1016/j.conbuildmat.2015.12.102.

Li, Q., Zhao, Y., Chen, H., Hou, P., & Cheng, X. (2019). Effect of cornstalk ash on the microstructure of cement-based material under sulfate attack. IOP Conference Series: Earth and Environmental Science, 358(5), 052010. doi:10.1088/1755-1315/358/5/052010.

IS: 8112 – 1989. (2013). Ordinary Portland Cement, 43 grade-Specification. Bureau of Indian Standards, New Delhi, India.

IS: 2720 Part 3 (Section 2). (1980). Methods of test for soils, Part 3: Determination of specific gravity, Section 2: Fine, medium and coarse grained soils. Bureau of Indian Standards, New Delhi, India.

IS 4031-1. (1996). Methods of physical tests for hydraulic cement, Part 1: Determination of fineness by dry sieving. Bureau of Indian Standards, New Delhi, India.

IS 4031-4. (1988). Methods of physical tests for hydraulic cement, Part 4: Determination of consistency of standard cement paste. Bureau of Indian Standards, New Delhi, India.

IS 4031-5. (1988). Methods of physical tests for hydraulic cement, Part 5: Determination of initial and final setting times. Bureau of Indian Standards, New Delhi, India.

IS 456. (2000). Plain and Reinforced Concrete - Code of Practice. Bureau of Indian Standards, New Delhi, India.

IS 516. (1959). Method of Tests for Strength of Concrete. Bureau of Indian Standards, New Delhi, India.

IS 5816. (1999). Splitting Tensile Strength of Concrete- Method of Test. Bureau of Indian Standards, New Delhi, India.

Memon, S. A., Khan, S., Wahid, I., Shestakova, Y., & Ashraf, M. (2020). Evaluating the Effect of Calcination and Grinding of Corn Stalk Ash on Pozzolanic Potential for Sustainable Cement-Based Materials. Advances in Materials Science and Engineering, 2020, 1–13. doi:10.1155/2020/1619480.

IS 2386-3. (1963). Methods of test for aggregates for concrete, Part 3: Specific gravity, density, voids, absorption and bulking. Bureau of Indian Standards, New Delhi, India.

IS 383. (1970). Specification for Coarse and Fine Aggregates from Natural Sources for Concrete. Bureau of Indian Standards, New Delhi, India.

Full Text: PDF

DOI: 10.28991/CEJ-SP2024-010-02


Copyright (c) 2024 Aakash Jamwal, Akhilesh Nautiyal, Kanwarpreet Singh, SHAMSHAD ALAM, Nimer Ali Alselami, Khaled Mohammad Aati

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.