Asphalt Mix Compressive Stress-Strain Behavior: An Analytical and Experimental Study of Variable Influence
Abstract
Doi: 10.28991/CEJ-2024-010-05-011
Full Text: PDF
Keywords
References
Rangan, P. R., Tumpu, M., & Mansyur. (2023). Utilization of Igneous Rock as Coarse Aggregate in Asphalt Concrete Binder Course Mixture. IOP Conference Series: Earth and Environmental Science, 1134(1), 012005. doi:10.1088/1755-1315/1134/1/012005.
Sunarjono, S., Mumfaz, Z. Z., Hidayati, N., & Harnaeni, S. R. (2024). Durability test method of hot mix asphalt: A review. In AIP Conference Proceedings 2838, 03002. doi:10.1063/5.0179647.
Tumpu, M., Tjaronge, M. W., & Djamaluddin, A. R. (2020). Prediction of long-term volumetric parameters of asphalt concrete binder course mixture using artificial ageing test. IOP Conference Series: Earth and Environmental Science, 419(1), 012058. doi:10.1088/1755-1315/419/1/012058.
Hadiwardoyo, S. P., Sinaga, E. S., & Fikri, H. (2013). The influence of Buton asphalt additive on skid resistance based on penetration index and temperature. Construction and Building Materials, 42, 5-10. doi:10.1016/j.conbuildmat.2012.12.018.
Sims, I. (2016). The Shell Bitumen Handbook. Proceedings of the Institution of Civil Engineers - Construction Materials, 169(1), 44–44, Leeds, United Kingdom. doi:10.1680/jcoma.15.00061.
Chai, J.-C., & Miura, N. (2002). Traffic-Load-Induced Permanent Deformation of Road on Soft Subsoil. Journal of Geotechnical and Geoenvironmental Engineering, 128(11), 907–916. doi:10.1061/(asce)1090-0241(2002)128:11(907).
Zheng, J., Tang, J., Zhou, Z., Heng, J., Chu, X., & Wu, T. (2022). Intelligent cognition of traffic loads on road bridges: From measurement to simulation – A review. Measurement, 200, 111636. doi:10.1016/j.measurement.2022.111636.
Mabui, D. S., Tjaronge, M. W., Adisasmita, S. A., & Pasra, M. (2020). Resistance to cohesion loss in cantabro test on specimens of porous asphalt containing modificated asbuton. IOP Conference Series: Earth and Environmental Science, 419(1), 012100. doi:10.1088/1755-1315/419/1/012100.
Sholichin, I., Iwan Wahyudiyanto, & A.E. Putra. (2021). Asphalt Characteristics of Concrete Asphalt Mixed to Reduce Early Damage in Flexible Pavement. CI-TECH, 2(01), 12–17. doi:10.33005/ci-tech.v2i01.27.
Sunarjono, S., & Ngafwan, N. (2022). Implementation of Palm Oil Waste Nano Technology to Increase the Durability of Road Pavement Materials: Proposed Research Roadmap. Urecol Journal. Part E: Engineering, 2(1), 9–18. doi:10.53017/uje.138.
Angelone, S., Cauhapé Casaux, M., Borghi, M., & Martinez, F. O. (2016). Green pavements: reuse of plastic waste in asphalt mixtures. Materials and Structures/Materiaux et Constructions, 49(5), 1655–1665. doi:10.1617/s11527-015-0602-x.
Aisha, N. W. (2023). The Influence of Waste Banks on the Amount of Plastic Waste in Indonesia. Alternative Journal - Journal of International Relations Science, 14(1). doi:10.31479/jualter.v14i1.57.
Tumpu, M., & Irianto. (2022). Marshall characteristics of asphalt concrete binder course (AC-BC) mixture containing modificated asbuton (retona blend 55) type. AIP Conference Proceedings, 2391. doi:10.1063/5.0073735.
Sutoyo, Mochtar, & Prastyanto. (2022, December). Analysis of the Effect of Asbuton on Porous Asphalt Mixtures for Heavy Load Traffic. In International Conference on Emerging Smart Cities, 555-569. doi:10.1007/978-981-99-1111-0_47.
Caroles, L., Tumpu, M., Rangan, P. R., & Mansyur. (2021). Marshall properties of LASBUTAG asphalt mixes with pertalite as a modifier. IOP Conference Series: Earth and Environmental Science, 871(1), 012064. doi:10.1088/1755-1315/871/1/012064.
Tayfur, S., Ozen, H., & Aksoy, A. (2007). Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, 21(2), 328–337. doi:10.1016/j.conbuildmat.2005.08.014.
Birgisson, B., Montepara, A., Romeo, E., Roncella, R., Napier, J. A. L., & Tebaldi, G. (2008). Determination and prediction of crack patterns in hot mix asphalt (HMA) mixtures. Engineering Fracture Mechanics, 75(3–4), 664–673. doi:10.1016/j.engfracmech.2007.02.003.
Sojobi, A. O., Nwobodo, S. E., & Aladegboye, O. J. (2016). Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Engineering, 3(1). doi:10.1080/23311916.2015.1133480.
Soltani, M., Moghaddam, T. B., Karim, M. R., & Baaj, H. (2015). Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology. Engineering Failure Analysis, 58, 238–248. doi:10.1016/j.engfailanal.2015.09.005.
Moghaddam, T. B., Karim, M. R., & Soltani, M. (2013). Utilization of waste plastic bottles in asphalt mixture. Journal of Engineering Science and Technology, 8(3), 264–271.
Kumar, A., Berwal, P., Al-Mansour, A. I., Khan, M. A., Alam, S., Lee, S. M., Malik, A., & Iqbal, A. (2022). Impact of Crumb Rubber Concentration and Plastic Coated Aggregates on the Rheological Performance of Modified Bitumen Asphalt. Sustainability (Switzerland), 14(7). doi:10.3390/su14073907.
Pasra, M., Tjaronge, M. W., Caronge, M. A., Djamaluddin, A. R., Lapian, F. E. P., & Tumpu, M. (2022). Influence of Tensile Load on Bonding Strength of Asphalt Concrete Containing Modified Buton Asphalt and Polyethylene Terephthalate Waste: A Case Study of Indonesian Roads. International Journal of Engineering, Transactions B: Applications, 35(9), 1779–1786. doi:10.5829/ije.2022.35.09c.14.
Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., & Ahmadinia, E. (2012). Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt. Construction and Building Materials, 36, 984–989. doi:10.1016/j.conbuildmat.2012.06.015.
Baghaee Moghaddam, T., Karim, M. R., & Syammaun, T. (2012). Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Construction and Building Materials, 34, 236–242. doi:10.1016/j.conbuildmat.2012.02.054.
Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., & Shafigh, P. (2011). Using waste plastic bottles as additive for stone mastic asphalt. Materials and Design, 32(10), 4844–4849. doi:10.1016/j.matdes.2011.06.016.
Maal, A., Pallu, M. S., Civil, N. A., & Ramli, I. (2017). Experimental study the performance of asphalt concrete which using plastics powder filler in submersed water conditions. International Journal of Civil Engineering and Technology, 8(7), 686–696.
Kleizienė, R., Vaitkus, A., & Čygas, D. (2016). Influence of asphalt visco-elastic properties on flexible pavement performance. The Baltic Journal of Road and Bridge Engineering, 11(4), 313–323. doi:10.3846/bjrbe.2016.36.
Cai, W., McDowell, G. R., & Airey, G. D. (2014). Discrete element visco-elastic modelling of a realistic graded asphalt mixture. Soils and Foundations, 54(1), 12–22. doi:10.1016/j.sandf.2013.12.002.
Cao, P., Leng, Z., Shi, F., Zhou, C., Tan, Z., & Wang, Z. (2020). A novel visco-elastic damage model for asphalt concrete and its numerical implementation. Construction and Building Materials, 264. doi:10.1016/j.conbuildmat.2020.120261.
Ramos-García, J. A., & Castro, M. (2017). Linear visco-elastic behavior of asphalt pavements: 3D-FE response models. Construction and Building Materials, 136, 414–425. doi:10.1016/j.conbuildmat.2017.01.015.
Mabui, D. S., Tumpu, M., Tjaronge, M. W., Irianto, Gusty, S., & Mansyur. (2023). Stability Marshall of Porous Asphalt Mixed with Waste Polyethylene Terephthalate (PET) and Modified Asbuton. International Journal of Engineering Trends and Technology, 71(7), 216–222. doi:10.14445/22315381/IJETT-V71I7P221.
Maulana, A., Tumpu, M., Putri Indriani, I., & Utama, I. (2023). Flood Sedimentology for Future Floods Mitigation in North Luwu, Sulawesi, Indonesia. Civil Engineering Journal (Iran), 9(4), 906–914. doi:10.28991/CEJ-2023-09-04-011.
Sazid, M., & Ahmed, H. A. (2019). Stability Analysis of Shallow Depth Tunnel in Weak Rock Mass: 3D Numerical Modeling Approach. Journal of City and Development, 1(1), 18–22.
Alsayed, Z., Awad, R., & Badawi, M. S. (2020). Thermo-mechanical properties of high density polyethylene with zinc oxide as a filler. Iranian Polymer Journal (English Edition), 29(4), 309–320. doi:10.1007/s13726-020-00796-7.
Carreira, D. J., & Chu, K. H. (1985). Stress-Strain Relationship for Plain Concrete in Compression. Journal of the American Concrete Institute, 82(6), 797–804. doi:10.14359/10390.
Zheng, J., & Huang, T. (2015). Study on triaxial test method and failure criterion of asphalt mixture. Journal of Traffic and Transportation Engineering (English Edition), 2(2), 93–106. doi:10.1016/j.jtte.2015.02.003.
Starodubsky, S., Blechman, I., & Livneh, M. (1994). Stress-strain relationship for asphalt concrete in compression. Materials and Structures, 27(8), 474–482. doi:10.1007/BF02473452.
Wang, J., Molenaar, A. A. A., Van De Ven, M. F. C., & Wu, S. (2016). Behavior of asphalt concrete mixtures under tri-axial compression. Construction and Building Materials, 105, 269–274. doi:10.1016/j.conbuildmat.2015.12.036.
Casey, D., McNally, C., Gibney, A., & Gilchrist, M. D. (2008). Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling, 52(10), 1167-1174. doi:10.1016/j.resconrec.2008.06.002.
DOI: 10.28991/CEJ-2024-010-05-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Irianto Irianto

This work is licensed under a Creative Commons Attribution 4.0 International License.