Asphalt Mix Compressive Stress-Strain Behavior: An Analytical and Experimental Study of Variable Influence

. Irianto, M. Tumpu, Franky E. P. Lapian

Abstract


To address the excessive depletion of natural resources in Indonesia's civil construction sector, there's a rising trend in utilizing plastic waste from packaging, such as beverage bottles and plastic bags, alongside renewable energy sources like Modified Buton Asphalt (MBA). MBA serves as a partial substitute for both fine and coarse natural aggregates and non-renewable energy sources like petroleum bitumen. This study aimed to investigate the effects of incorporating polyethylene terephthalate (PET) and polypropylene (PP) waste as partial substitutes for coarse and fine aggregates through experiments and t-tests. The objective was to determine how the stress-strain behavior of asphalt mixtures formed using MBA changed with the addition of this mixture. Additionally, compressive strength and elastic modulus were calculated under mixed compressive loads. PET and PP plastic waste replaced natural coarse and fine aggregates at three volume percentages: 1%, 2%, and 3%, with a PET:PP ratio of 50%. A manual grater was used to shred PET and PP plastic bottles into shredded plastic waste, which was retained in sieve no. 50 after sieving. The study found that adding PET, PP plastic, and MBA waste enhanced the asphalt mixture's mechanical strength and modified relevant variables, resulting in a more elastic and ductile behavior.

 

Doi: 10.28991/CEJ-2024-010-05-011

Full Text: PDF


Keywords


Asphalt Mix, Compressive Stress-Strain, PET, PP, MBA.

References


Rangan, P. R., Tumpu, M., & Mansyur. (2023). Utilization of Igneous Rock as Coarse Aggregate in Asphalt Concrete Binder Course Mixture. IOP Conference Series: Earth and Environmental Science, 1134(1), 012005. doi:10.1088/1755-1315/1134/1/012005.

Sunarjono, S., Mumfaz, Z. Z., Hidayati, N., & Harnaeni, S. R. (2024). Durability test method of hot mix asphalt: A review. In AIP Conference Proceedings 2838, 03002. doi:10.1063/5.0179647.

Tumpu, M., Tjaronge, M. W., & Djamaluddin, A. R. (2020). Prediction of long-term volumetric parameters of asphalt concrete binder course mixture using artificial ageing test. IOP Conference Series: Earth and Environmental Science, 419(1), 012058. doi:10.1088/1755-1315/419/1/012058.

Hadiwardoyo, S. P., Sinaga, E. S., & Fikri, H. (2013). The influence of Buton asphalt additive on skid resistance based on penetration index and temperature. Construction and Building Materials, 42, 5-10. doi:10.1016/j.conbuildmat.2012.12.018.

Sims, I. (2016). The Shell Bitumen Handbook. Proceedings of the Institution of Civil Engineers - Construction Materials, 169(1), 44–44, Leeds, United Kingdom. doi:10.1680/jcoma.15.00061.

Chai, J.-C., & Miura, N. (2002). Traffic-Load-Induced Permanent Deformation of Road on Soft Subsoil. Journal of Geotechnical and Geoenvironmental Engineering, 128(11), 907–916. doi:10.1061/(asce)1090-0241(2002)128:11(907).

Zheng, J., Tang, J., Zhou, Z., Heng, J., Chu, X., & Wu, T. (2022). Intelligent cognition of traffic loads on road bridges: From measurement to simulation – A review. Measurement, 200, 111636. doi:10.1016/j.measurement.2022.111636.

Mabui, D. S., Tjaronge, M. W., Adisasmita, S. A., & Pasra, M. (2020). Resistance to cohesion loss in cantabro test on specimens of porous asphalt containing modificated asbuton. IOP Conference Series: Earth and Environmental Science, 419(1), 012100. doi:10.1088/1755-1315/419/1/012100.

Sholichin, I., Iwan Wahyudiyanto, & A.E. Putra. (2021). Asphalt Characteristics of Concrete Asphalt Mixed to Reduce Early Damage in Flexible Pavement. CI-TECH, 2(01), 12–17. doi:10.33005/ci-tech.v2i01.27.

Sunarjono, S., & Ngafwan, N. (2022). Implementation of Palm Oil Waste Nano Technology to Increase the Durability of Road Pavement Materials: Proposed Research Roadmap. Urecol Journal. Part E: Engineering, 2(1), 9–18. doi:10.53017/uje.138.

Angelone, S., Cauhapé Casaux, M., Borghi, M., & Martinez, F. O. (2016). Green pavements: reuse of plastic waste in asphalt mixtures. Materials and Structures/Materiaux et Constructions, 49(5), 1655–1665. doi:10.1617/s11527-015-0602-x.

Aisha, N. W. (2023). The Influence of Waste Banks on the Amount of Plastic Waste in Indonesia. Alternative Journal - Journal of International Relations Science, 14(1). doi:10.31479/jualter.v14i1.57.

Tumpu, M., & Irianto. (2022). Marshall characteristics of asphalt concrete binder course (AC-BC) mixture containing modificated asbuton (retona blend 55) type. AIP Conference Proceedings, 2391. doi:10.1063/5.0073735.

Sutoyo, Mochtar, & Prastyanto. (2022, December). Analysis of the Effect of Asbuton on Porous Asphalt Mixtures for Heavy Load Traffic. In International Conference on Emerging Smart Cities, 555-569. doi:10.1007/978-981-99-1111-0_47.

Caroles, L., Tumpu, M., Rangan, P. R., & Mansyur. (2021). Marshall properties of LASBUTAG asphalt mixes with pertalite as a modifier. IOP Conference Series: Earth and Environmental Science, 871(1), 012064. doi:10.1088/1755-1315/871/1/012064.

Tayfur, S., Ozen, H., & Aksoy, A. (2007). Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, 21(2), 328–337. doi:10.1016/j.conbuildmat.2005.08.014.

Birgisson, B., Montepara, A., Romeo, E., Roncella, R., Napier, J. A. L., & Tebaldi, G. (2008). Determination and prediction of crack patterns in hot mix asphalt (HMA) mixtures. Engineering Fracture Mechanics, 75(3–4), 664–673. doi:10.1016/j.engfracmech.2007.02.003.

Sojobi, A. O., Nwobodo, S. E., & Aladegboye, O. J. (2016). Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Engineering, 3(1). doi:10.1080/23311916.2015.1133480.

Soltani, M., Moghaddam, T. B., Karim, M. R., & Baaj, H. (2015). Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology. Engineering Failure Analysis, 58, 238–248. doi:10.1016/j.engfailanal.2015.09.005.

Moghaddam, T. B., Karim, M. R., & Soltani, M. (2013). Utilization of waste plastic bottles in asphalt mixture. Journal of Engineering Science and Technology, 8(3), 264–271.

Kumar, A., Berwal, P., Al-Mansour, A. I., Khan, M. A., Alam, S., Lee, S. M., Malik, A., & Iqbal, A. (2022). Impact of Crumb Rubber Concentration and Plastic Coated Aggregates on the Rheological Performance of Modified Bitumen Asphalt. Sustainability (Switzerland), 14(7). doi:10.3390/su14073907.

Pasra, M., Tjaronge, M. W., Caronge, M. A., Djamaluddin, A. R., Lapian, F. E. P., & Tumpu, M. (2022). Influence of Tensile Load on Bonding Strength of Asphalt Concrete Containing Modified Buton Asphalt and Polyethylene Terephthalate Waste: A Case Study of Indonesian Roads. International Journal of Engineering, Transactions B: Applications, 35(9), 1779–1786. doi:10.5829/ije.2022.35.09c.14.

Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., & Ahmadinia, E. (2012). Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt. Construction and Building Materials, 36, 984–989. doi:10.1016/j.conbuildmat.2012.06.015.

Baghaee Moghaddam, T., Karim, M. R., & Syammaun, T. (2012). Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Construction and Building Materials, 34, 236–242. doi:10.1016/j.conbuildmat.2012.02.054.

Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., & Shafigh, P. (2011). Using waste plastic bottles as additive for stone mastic asphalt. Materials and Design, 32(10), 4844–4849. doi:10.1016/j.matdes.2011.06.016.

Maal, A., Pallu, M. S., Civil, N. A., & Ramli, I. (2017). Experimental study the performance of asphalt concrete which using plastics powder filler in submersed water conditions. International Journal of Civil Engineering and Technology, 8(7), 686–696.

Kleizienė, R., Vaitkus, A., & Čygas, D. (2016). Influence of asphalt visco-elastic properties on flexible pavement performance. The Baltic Journal of Road and Bridge Engineering, 11(4), 313–323. doi:10.3846/bjrbe.2016.36.

Cai, W., McDowell, G. R., & Airey, G. D. (2014). Discrete element visco-elastic modelling of a realistic graded asphalt mixture. Soils and Foundations, 54(1), 12–22. doi:10.1016/j.sandf.2013.12.002.

Cao, P., Leng, Z., Shi, F., Zhou, C., Tan, Z., & Wang, Z. (2020). A novel visco-elastic damage model for asphalt concrete and its numerical implementation. Construction and Building Materials, 264. doi:10.1016/j.conbuildmat.2020.120261.

Ramos-García, J. A., & Castro, M. (2017). Linear visco-elastic behavior of asphalt pavements: 3D-FE response models. Construction and Building Materials, 136, 414–425. doi:10.1016/j.conbuildmat.2017.01.015.

Mabui, D. S., Tumpu, M., Tjaronge, M. W., Irianto, Gusty, S., & Mansyur. (2023). Stability Marshall of Porous Asphalt Mixed with Waste Polyethylene Terephthalate (PET) and Modified Asbuton. International Journal of Engineering Trends and Technology, 71(7), 216–222. doi:10.14445/22315381/IJETT-V71I7P221.

Maulana, A., Tumpu, M., Putri Indriani, I., & Utama, I. (2023). Flood Sedimentology for Future Floods Mitigation in North Luwu, Sulawesi, Indonesia. Civil Engineering Journal (Iran), 9(4), 906–914. doi:10.28991/CEJ-2023-09-04-011.

Sazid, M., & Ahmed, H. A. (2019). Stability Analysis of Shallow Depth Tunnel in Weak Rock Mass: 3D Numerical Modeling Approach. Journal of City and Development, 1(1), 18–22.

Alsayed, Z., Awad, R., & Badawi, M. S. (2020). Thermo-mechanical properties of high density polyethylene with zinc oxide as a filler. Iranian Polymer Journal (English Edition), 29(4), 309–320. doi:10.1007/s13726-020-00796-7.

Carreira, D. J., & Chu, K. H. (1985). Stress-Strain Relationship for Plain Concrete in Compression. Journal of the American Concrete Institute, 82(6), 797–804. doi:10.14359/10390.

Zheng, J., & Huang, T. (2015). Study on triaxial test method and failure criterion of asphalt mixture. Journal of Traffic and Transportation Engineering (English Edition), 2(2), 93–106. doi:10.1016/j.jtte.2015.02.003.

Starodubsky, S., Blechman, I., & Livneh, M. (1994). Stress-strain relationship for asphalt concrete in compression. Materials and Structures, 27(8), 474–482. doi:10.1007/BF02473452.

Wang, J., Molenaar, A. A. A., Van De Ven, M. F. C., & Wu, S. (2016). Behavior of asphalt concrete mixtures under tri-axial compression. Construction and Building Materials, 105, 269–274. doi:10.1016/j.conbuildmat.2015.12.036.

Casey, D., McNally, C., Gibney, A., & Gilchrist, M. D. (2008). Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling, 52(10), 1167-1174. doi:10.1016/j.resconrec.2008.06.002.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Irianto Irianto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message