Comparison of Different Combined Multiple Tunnel Complexes in Soft Soil under Seismic Vibrations

Ahsan Naseem, Wajahat S. Ansari, Muhammad Kashif, Asad Naseem, Shamsher Sadiq, Ken Schotte, Hans De Backer

Abstract


The resilience of underground tunnels has gained paramount importance recently, driven by the need to ensure the safety and functionality of critical transportation and infrastructure systems during seismic events. Underground tunnels are prone to severe damage when the soil condition is poor and located in a high seismic zone. While the behavior of individual tunnels has been extensively studied, the concept of multiple tunnels combined into a large tunnel complex is relatively new, with limited available research focusing on rectangular-shaped tunnel complexes and requiring a more detailed examination. This study parametrically analyzes two novel and unconventional structures in soft soil, i.e., twin and triple tunnel complexes resulting from the combination of closely spaced circular twin and triple individual tunnels. Seismic records from Coyote (US, 1979), Kobe (Japan, 1995), and Kocaeli (Turkey, 1999) have been used to determine the produced surface displacements, tunnel distortions, lateral stresses on the tunnel structures, and the induced seismic forces, including thrusts, shear forces, and bending moments. The results are then compared with the conventional rectangular-shaped tunnel complex, which is also analyzed under the same conditions. The comparison shows that the twin and triple tunnel complexes are comparatively better seismic performers than the conventional rectangular tunnel complex, with reduced ground displacements produced, lesser incurred structural distortions, experienced lateral stresses, and induced seismic forces.

 

Doi: 10.28991/CEJ-2023-09-12-01

Full Text: PDF


Keywords


Tunnel Complex; Soft Soil; Soil-Structure Interaction; Seismic Response; Finite Element Modeling.

References


Tsinidis, G. (2017). Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking. Tunnelling and Underground Space Technology, 62, 1–22. doi:10.1016/j.tust.2016.11.003.

Sadiq, S., Van Nguyen, Q., Jung, H., & Park, D. (2019). Effect of Flexibility Ratio on Seismic Response of Cut-and-Cover Box Tunnel. Advances in Civil Engineering, 4905329, 1-16. doi:10.1155/2019/4905329.

Hashash, Y. M. A., Karina, K., Koutsoftas, D., and O'Riordan, N. (2010). Seismic design considerations for underground box structures.Proceeding in 2010 Earth Retention Conference-Earth Retention Conference 3, 620-637. doi:10.1061/41128(384)64.

Naseem, A., Schotte, K., De Pauw, B., & De Backer, H. (2019). Ground Settlements due to Construction of Triplet Tunnels with Different Construction Arrangements. Advances in Civil Engineering, 8637837, 1-18. doi:10.1155/2019/8637837.

Wang, J. (1993). Seismic design of tunnels: A state-of-the-art approach. Parsons Brinckerhoff Quade & Douglas. New York, United States.

Penzien, J. (2000). Seismically induced racking of tunnel linings. Earthquake Engineering and Structural Dynamics, 29(5), 683–691. doi:10.1002/(SICI)1096-9845(200005)29:5<683::AID-EQE932>3.0.CO;2-1.

Bobet, A. (2010). Drained and undrained response of deep tunnels subjected to far-field shear loading. Tunnelling and Underground Space Technology, 25(1), 21–31. doi:10.1016/j.tust.2009.08.001.

Park, K. H., Tantayopin, K., Tontavanich, B., & Owatsiriwong, A. (2009). Analytical solution for seismic-induced ovaling of circular tunnel lining under no-slip interface conditions: A revisit. Tunnelling and Underground Space Technology, 24(2), 231–235. doi:10.1016/j.tust.2008.07.001.

Lanzano, G. (2009). Physical and Analytical Modelling of Tunnels Under Dynamic Loadings. Doctoral dissertation, University of Naples Federico II, Naples, Italy.

Lanzano, G., Bilotta, E., Russo, G., Silvestri, F., & Madabhushi, S. P. G. (2010). Dynamic centrifuge tests on shallow tunnel models in dry sand. Physical Modelling in Geotechnics - Proceedings of the 7th International Conference on Physical Modelling in Geotechnics 2010, (ICPMG 2010), 561–567. doi:10.1201/b10554-91.

Bilotta, E., Lanzano, G., Madabhushi, S. P. G., & Silvestri, F. (2014). A numerical Round Robin on tunnels under seismic actions. Acta Geotechnica, 9(4), 563–579. doi:10.1007/s11440-014-0330-3.

Adalier, K., Abdoun, T., Dobry, R., Phillips, R., Yang, D., & Naesgaard, E. (2003). Centrifuge modelling for seismic retrofit design of an immersed tube tunnel. International Journal of Physical Modelling in Geotechnics, 3(2), 23–35. doi:10.1680/ijpmg.2003.030203.

Ulgen, D., Saglam, S., & Ozkan, M. Y. (2015). Dynamic response of a flexible rectangular underground structure in sand: centrifuge modeling. Bulletin of Earthquake Engineering, 13(9), 2547–2566. doi:10.1007/s10518-015-9736-z.

Qiu, J., Xie, Y., Fan, H., Wang, Z., & Zhang, Y. (2017). Centrifuge modelling of twin-tunnelling induced ground movements in loess strata. Arabian Journal of Geosciences, 10(22), 493. doi:10.1007/s12517-017-3297-1.

Omari, A. El, Chourak, M., Echebba, E. M., Cherif, S. E., Ugena, C. N., Rougui, M., Chehade, F. H., Fernández, F. L., & Chaaraoui, A. (2021). Numerical analysis of twin tunnels lining under different seismic conditions. Infrastructures, 6(2), 1–14. doi:10.3390/infrastructures6020029.

Alielahi, H., & Adampira, M. (2016). Effect of twin-parallel tunnels on seismic ground response due to vertically in-plane waves. International Journal of Rock Mechanics and Mining Sciences, 85, 67–83. doi:10.1016/j.ijrmms.2016.03.010.

Singh, M., Viladkar, M. N., & Samadhiya, N. K. (2021). Static and seismic analysis of twin metro underground tunnels. Lecture Notes in Civil Engineering, 86, 241–257. doi:10.1007/978-981-15-6233-4_17.

Tsinidis, G., de Silva, F., Anastasopoulos, I., Bilotta, E., Bobet, A., Hashash, Y. M., ... & Fuentes, R. (2020). Seismic behaviour of tunnels: From experiments to analysis. Tunnelling and Underground Space Technology, 99, 103334. doi:10.1016/j.tust.2020.103334.

Kamal, H., Hussein, M., & Akl, A. (2021). Parametric study of twin tunnel under seismic loads for Cairo Metro Line No. 4. HBRC Journal, 17(1), 137–156. doi:10.1080/16874048.2021.1907962.

Jishnu, R. B., & Ayothiraman, R. (2020). Interaction of Urban Underground Twin Metro Tunnels under Static and Earthquake Loading. Journal of Earthquake and Tsunami, 14(4), 2050019. doi:10.1142/S1793431120500190.

Azadi, M., & Kalhor, M. (2014). Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other. World Academy of Science, Engineering and Technology International Journal of Civil, Architectural, Structural and Construction Engineering, 8(6), 614–616.

Tiwari, R., Chakraborty, T., & Matsagar, V. (2017). Dynamic Analysis of Tunnel in Soil Subjected to Internal Blast Loading. Geotechnical and Geological Engineering, 35(4), 1491–1512. doi:10.1007/s10706-017-0189-9.

Wu, C., Lu, D., Ma, C., & Du, X. (2022). Seismic Performance Evaluation Method of Underground Frame Structures Considering the Vertical Seismic Capacity of Structural Components. Journal of Earthquake and Tsunami, 16(2), 2140004. doi:10.1142/S1793431121400042.

Tsinidis, G., Karatzetzou, A., Stefanidou, S., & Markogiannaki, O. Developments in seismic vulnerability assessment of tunnels and underground structures. Geotechnics, 2(1), 209–249.

Wood, A. M. (2002). Tunnelling: Management by design. In Tunnelling: Management by design. Taylor & Francis. doi:10.4324/9780203477663.

Wu, B. R., & Lee, C. J. (2003). Ground movements and collapse mechanisms induced by tunneling in clayey soil. International Journal of Physical Modelling in Geotechnics, 3(4), 15–29. doi:10.1680/ijpmg.2003.030402.

Hage Chehade, F., & Shahrour, I. (2008). Numerical analysis of the interaction between twin-tunnels: Influence of the relative position and construction procedure. Tunnelling and Underground Space Technology, 23(2), 210–214. doi:10.1016/j.tust.2007.03.004.

Mirhabibi, A., & Soroush, A. (2012). Effects of surface buildings on twin tunnelling-induced ground settlements. Tunnelling and Underground Space Technology, 29, 40–51. doi:10.1016/j.tust.2011.12.009.

Tyagi, A., Zulkefli, M. F. Bin, Pan, Y., Goh, S.-H., & Lee, F.-H. (2017). Failure Modes of Tunnels with Improved Soil Surrounds. Journal of Geotechnical and Geoenvironmental Engineering, 143(11), 4017088. doi:10.1061/(asce)gt.1943-5606.0001788.

Tyagi, A., & Lee, F. H. (2022). Influence of tunnel failure on the existing large-diameter tunnel in improved soil surround. Tunnelling and Underground Space Technology, 120, 104276. doi:10.1016/j.tust.2021.104276.

Zou, Y., Liu, H., Jing, L., & Cui, J. (2017). A pseudo-static method for seismic responses of underground frame structures subjected to increasing excitations. Tunnelling and Underground Space Technology, 65, 106–120. doi:10.1016/j.tust.2017.02.006.

Nguyen, D. D., Lee, T. H., Nguyen, V. Q., & Park, D. (2019). Seismic damage analysis of box metro tunnels accounting for aspect ratio and shear failure. Applied Sciences (Switzerland), 9(16), 3207. doi:10.3390/app9163207.

Chen, Z., Chen, W., Li, Y., & Yuan, Y. (2016). Shaking table test of a multi-story subway station under pulse-like ground motions. Soil Dynamics and Earthquake Engineering, 82, 111–122. doi:10.1016/j.soildyn.2015.12.002.

Li, W., & Chen, Q. (2018). Seismic performance and failure mechanism of a subway station based on nonlinear finite element analysis. KSCE Journal of Civil Engineering, 22(2), 765–776. doi:10.1007/s12205-017-1840-y.

Ma, C., Lu, D. C., Du, X. L., Qi, C. Z., & Zhang, X. Y. (2019). Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes. Soil Dynamics and Earthquake Engineering, 119, 265–280. doi:10.1016/j.soildyn.2019.01.017.

Lu, C. C., & Hwang, J. H. (2019). Nonlinear collapse simulation of Daikai Subway in the 1995 Kobe earthquake: Necessity of dynamic analysis for a shallow tunnel. Tunnelling and Underground Space Technology, 87, 78–90. doi:10.1016/j.tust.2019.02.007.

Sayed, M. A., Kwon, O. S., Park, D., & Van Nguyen, Q. (2019). Multi-platform soil-structure interaction simulation of Daikai subway tunnel during the 1995 Kobe earthquake. Soil Dynamics and Earthquake Engineering, 125, 105643. doi:10.1016/j.soildyn.2019.04.017.

Nguyen, D. D., Park, D., Shamsher, S., Nguyen, V. Q., & Lee, T. H. (2019). Seismic vulnerability assessment of rectangular cut-and-cover subway tunnels. Tunnelling and Underground Space Technology, 86, 247–261. doi:10.1016/j.tust.2019.01.021.

Naseem, A., Kashif, M., Iqbal, N., Schotte, K., & De Backer, H. (2020). Seismic behavior of triple tunnel complex in soft soil subjected to transverse shaking. Applied Sciences (Switzerland), 10(1), 334. doi:10.3390/app10010334.

Naseem, A., Ansari, W. S., Kashif, M., Sadiq, S., Schotte, K., & De Backer, H. (2023). Evaluating the performance of the twin tunnel complex in soft soil subjected to horizontal ground shaking. Frontiers in Environmental Science, 11, 1-16. doi:10.3389/fenvs.2023.1242296.

Naseem, A., Kashif, M., Schotte, K., & De Backer, H. (2023). Seismic Fragility Curves of Combined Multiple Tunnel Complexes in Soft Soils. Journal of Earthquake and Tsunami, 17(6), 2350026. doi:10.1142/S1793431123500264.

I.S. EN 1998-1 (2005). EUROCODE 8: Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings. European Committee for Normalization, Brussels, Belgium.

Patil, M., Choudhury, D., Ranjith, P. G., & Zhao, J. (2018). Behavior of shallow tunnel in soft soil under seismic conditions. Tunnelling and Underground Space Technology, 82, 30–38. doi:10.1016/j.tust.2018.04.040.

Huo, H., Bobet, A., Fernández, G., & Ramírez, J. (2005). Load Transfer Mechanisms between Underground Structure and Surrounding Ground: Evaluation of the Failure of the Daikai Station. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1522–1533. doi:10.1061/(asce)1090-0241(2005)131:12(1522).

Blake, A. (1959). Deflection of a Thick Ring in Diametral Compression by Test and by Strength-of-Materials Theory. Journal of Applied Mechanics, 26 (2), 294–295. doi:10.1115/1.4012000.

Young, W. C., & Budynas, R. G. (2002). Roark’s Formulas for Stress And Strain (Volume 7). McGraw-Hill Education, New York, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ahsan Naseem, Wajahat Sammer Ansari, Muhammad Kashif, Shamsher Sadiq, Ken Schotte, Hans De Backer

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message