The Impact of Shear Reinforcement Amount and Arrangement on the Shear Capacity of Shallow RC Beams: An Experimental Study
Downloads
Doi: 10.28991/CEJ-2023-09-12-013
Full Text: PDF
[2] Sherwood, E. G., Lubell, A. S., Bentz, E. C., & Collins, M. P. (2007). One-Way Shear Strength of Thick Slabs and Wide Beams. (2006). ACI Structural Journal, 103(6), 794-802. doi:10.14359/18229.
[3] Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2023). The Impact of Aspect Ratio, Characteristic Strength and Compression Rebars on the Shear Capacity of Shallow RC Beams. Civil Engineering Journal (Iran), 9(9), 2259–2271. doi:10.28991/CEJ-2023-09-09-012.
[4] Serna-Ros, P., Fernandez-Prada, M. A., Miguel-Sosa, P., & Debb, O. A. R. (2002). Influence of stirrup distribution and support width on the shear strength of reinforced concrete wide beams. Magazine of Concrete Research, 54(3), 181–191. doi:10.1680/macr.2002.54.3.181.
[5] Wang, G., Zhu, F., & Yang, C. (2020). Experimental study on Shear behaviors of RC beams strengthened with ECC layers. IOP Conference Series: Materials Science and Engineering, 780(4), 042024. doi:10.1088/1757-899X/780/4/042024.
[6] Morsy, N. S., Sherif, A. G., Shoeib, A. E., & Agamy, M. H. (2018). Experimental Study of Enhancing the Shear Strength of Hidden/Shallow Beams by Using Shear Reinforcement. Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering, Budapest, Hungary. doi:10.11159/icsenm18.116.
[7] Taha, M. G., & Abbas, A. L. (2021). Effect of Longitudinal Maximum Spacing of Shear Reinforcement for wide Reinforced Concrete Beams. IOP Conference Series: Materials Science and Engineering, 1076(1), 012118. doi:10.1088/1757-899x/1076/1/012118.
[8] de Sousa, A. M. D., Lantsoght, E. O. L., & El Debs, M. K. (2021). One-way shear strength of wide reinforced concrete members without stirrups. Structural Concrete, 22(2), 968–992. doi:10.1002/suco.202000034.
[9] de Sousa, A. M. D., Lantsoght, E. O. L., & El Debs, M. K. (2023). Transition between Shear and Punching in Reinforced Concrete Slabs: Review and Predictions with ACI Code Expressions. ACI Structural Journal, 120(2), 115–128. doi:10.14359/51738350.
[10] de Sousa, A. M. D., Lantsoght, E. O. L., & El Debs, M. K. (2023). Failure mechanism of one-way slabs under concentrated loads after local reinforcement yielding. Engineering Structures, 291, 116396. doi:10.1016/j.engstruct.2023.116396.
[11] Moubarak, A. M. R., Elwardany, H., Abu El-hassan, K., & El-Din Taher, S. (2022). Shear strengthening of wide-shallow beams by inserted fasteners. Engineering Structures, 268. doi:10.1016/j.engstruct.2022.114554.
[12] Elansary, A. A., Elnazlawy, Y. Y., & Abdalla, H. A. (2022). Shear behaviour of concrete wide beams with spiral lateral reinforcement. Australian Journal of Civil Engineering, 20(1), 174–194. doi:10.1080/14488353.2021.1942405.
[13] Mohammed, A. S., Al-Zuheriy, A. S. J., & Abdulkareem, B. F. (2023). An Experimental Study to Predict a New Formula for Calculating the Deflection in Wide Concrete Beams Reinforced with Shear Steel Plates. International Journal of Engineering, 36(2), 360–371. doi:10.5829/ije.2023.36.02b.15.
[14] Khalil, A. E. H., Etman, E., Atta, A., Baraghith, A., & Behiry, R. (2019). The Effective Width in Shear Design of Wide-shallow Beams: A Comparative Study. KSCE Journal of Civil Engineering, 23(4), 1670–1681. doi:10.1007/s12205-019-0830-7.
[15] Mahmoud, S. M., Mabrouk, R. T. S., & Kassem, M. E. (2021). Behavior of RC wide beams under eccentric loading. Civil Engineering Journal (Iran), 7(11), 1880–1897. doi:10.28991/cej-2021-03091766.
[16] Ebid, A. M., & Deifalla, A. (2021). Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique. Ain Shams Engineering Journal, 12(3), 2493–2510. doi:10.1016/j.asej.2021.02.006.
[17] Abdul-Salam, B., Farghaly, A. S., & Benmokrane, B. (2016). Mechanisms of shear resistance of one-way concrete slabs reinforced with FRP bars. Construction and Building Materials, 127, 959–970. doi:10.1016/j.conbuildmat.2016.10.015.
[18] Al-Hamrani, A., & Alnahhal, W. (2022). Shear behaviour of one-way high strength plain and FRC slabs reinforced with basalt FRP bars. Composite Structures, 302. doi:10.1016/j.compstruct.2022.116234.
[19] El-Sayed, A. K., Al-Zaid, R. A., Al-Negheimish, A. I., Shuraim, A. B., & Alhozaimy, A. M. (2014). Long-term behavior of wide shallow RC beams strengthened with externally bonded CFRP plates. Construction and Building Materials, 51, 473–483. doi:10.1016/j.conbuildmat.2013.10.055.
[20] Conforti, A., Minelli, F., Tinini, A., & Plizzari, G. A. (2015). Influence of polypropylene fibre reinforcement and width-to-effective depth ratio in wide-shallow beams. Engineering Structures, 88, 12–21. doi:10.1016/j.engstruct.2015.01.037.
[21] Odero, B. J., Mutuku, R. N., Nyomboi, T., & Gariy, Z. A. (2022). Shear Performance of Concrete Beams with a Maximum Size of Recycled Concrete Aggregate. Advances in Materials Science and Engineering, 6804155. doi:10.1155/2022/6804155.
[22] Sagheer, A. M., & Tabsh, S. W. (2023). Shear Strength of Concrete Beams without Stirrups Made with Recycled Coarse Aggregate. Buildings, 13(1), 75. doi:10.3390/buildings13010075.
[23] Cheng, K., Du, Y., Wang, H., Liu, R., Sun, Y., Lu, Z., & Chen, L. (2023). Experimental Study of the Shear Performance of Combined Concrete–ECC Beams without Web Reinforcement. Materials, 16(16), 5706. doi:10.3390/ma16165706.
[24] Yu, Y., Zhao, X., Xu, J., Chen, C., Deresa, S., & Zhang, J. (2020). Machine Learning-Based Evaluation of Shear Capacity of Recycled Aggregate Concrete Beams. Materials, 13(20), 4552. doi:10.3390/ma13204552.
[25] Lantsoght, E., van der Veen, C., & Walraven, J. (2011). Experimental Study of Shear Capacity of Reinforced Concrete Slabs. Structures Congress 2011, 152-163. doi:10.1061/41171(401)15.
[26] Lantsoght, E. O. L., Van Der Veen, C., & Walraven, J. C. (2014). Shear in One-Way Slabs under Concentrated Load Close to Support. (2013). ACI Structural Journal, 110(2), 275-284. doi:10.14359/51684407.
[27] Alluqmani, A. E. (2020). Effect of the transversal-spacing of stirrup-legs on the behavior and strength of shallow concealed RC beams. Journal of Engineering, Design and Technology, 19(4), 932–942. doi:10.1108/JEDT-06-2020-0224.
[28] Koo, S., Shin, D., & Kim, C. (2021). Application of principal component analysis approach to predict shear strength of reinforced concrete beams with stirrups. Materials, 14(13), 3471. doi:10.3390/ma14133471.
[29] Fan, X., Wang, S., & Zhang, Z. (2020). A Study of Size Effect in Shear Resistance of Reinforced Concrete Beams Based on Machine Learning. IOP Conference Series: Earth and Environmental Science, 455(1), 12099. doi:10.1088/1755-1315/455/1/012099.
[30] De Domenico, D., Quaranta, G., Zeng, Q., & Monti, G. (2022). Machine-learning-enhanced variable-angle truss model to predict the shear capacity of RC elements with transverse reinforcement. Procedia Structural Integrity, 44, 1688–1695. doi:10.1016/j.prostr.2023.01.216.
[31] Wakjira, T. G., Ebead, U., & Alam, M. S. (2022). Machine learning-based shear capacity prediction and reliability analysis of shear-critical RC beams strengthened with inorganic composites. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01008.
[32] Wang, S., Ma, C., Wang, W., Hou, X., Xiao, X., Zhang, Z., Liu, X., & Liao, J. J. (2023). Prediction of Failure Modes and Minimum Characteristic Value of Transverse Reinforcement of RC Beams Based on Interpretable Machine Learning. Buildings, 13(2), 469. doi:10.3390/buildings13020469.
[33] Soliman, A. A., Mansour, D. M., Ebid, A., & Khalil, A. H. (2023). Shallow and Wide RC Beams, Definition, Capacity and Structural Behavior – Gap Study. The Open Civil Engineering Journal, 17(1), 1-11. doi:10.2174/18741495-v17-e230725-2023-28.
[34] ACI 318-89. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute (ACI), Michigan, United States.
[35] BS 8110-1. (1997). Structural use of concrete. British Standards Institution (BSI), London, United Kingdom.
[36] ES EN 1992-1-1. (2004). Eurocode2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.
[37] IS 456. (2000). Plain and Reinforced Concrete-Code of Practice (4th Ed.). Bureau of Indian Standards, New Delhi, India.
[38] ECP-203. (2018). Egyptian Code for Design and Construction of Reinforced Concrete Structures. National Housing and Building Research Center, Cairo, Egypt.
[39] Japan Society of Civil Engineers (JSCE). (2002). Standard Specifications for Concrete Structures. JSCE Guideline for Concrete No. 15, Japan Society of Civil Engineers, Tokyo, Japan.
[40] Ebid, A. M., & Deifalla, A. (2021). Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique. Ain Shams Engineering Journal, 12(3), 2493–2510. doi:10.1016/j.asej.2021.02.006.
[41] Ebid, A. M., Deifalla, A. F., & Mahdi, H. A. (2022). Evaluating Shear Strength of Light-Weight and Normal-Weight Concretes through Artificial Intelligence. Sustainability (Switzerland), 14(21), 14010. doi:10.3390/su142114010.
[42] Ramadan, M., Ors, D. M., Farghal, A. M., Afifi, A., Zaher, A. H., & Ebid, A. M. (2023). Punching shear behavior of HSC & UHPC post tensioned flat slabs – An experimental study. Results in Engineering, 17, 100882. doi:10.1016/j.rineng.2023.100882.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.