Torsional Behavior of CFRP Strengthening of SCC Box Beams with Web Openings under Repeated Loading
Downloads
Doi: 10.28991/CEJ-2023-09-12-06
Full Text: PDF
Downloads
[2] Mahmood, M. N., & Mahmood, A. S. (2011). Torsional behavior of prestressed concrete beams strengthened with CFRP sheets. 16th International Conference on Composite Structures (ICCS 16), 28-30 June, 2011, Porto, Portugal.
[3] ACI 440.2R-08. (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute (ACI), Michigan, United States.
[4] Allawi, A. A. (2006). Nonlinear Analysis of Reinforced Concrete Beams Strengthened by CFRP in Torsion. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.
[5] Hii, A. K. Y., & Al-Mahaidi, R. (2006). An experimental and numerical investigation on torsional strengthening of solid and box-section RC beams using CFRP laminates. Composite Structures, 75(1–4), 213–221. doi:10.1016/j.compstruct.2006.04.050.
[6] Jing, M., Raongjant, W., & Li, Z. (2007). Torsional strengthening of reinforced concrete box beams using carbon fiber reinforced polymer. Composite Structures, 78(2), 264–270. doi:10.1016/j.compstruct.2005.10.017.
[7] Ameli, M., Ronagh, H. R., & Dux, P. F. (2007). Behavior of FRP Strengthened Reinforced Concrete Beams under Torsion. Journal of Composites for Construction, 11(2), 192–200. doi:10.1061/(asce)1090-0268(2007)11:2(192).
[8] Majeed, A. A., Allawi, A. A., Chai, K. H., & Badaruzzam, H. W. W. (2017). Behavior of CFRP strengthened RC multicell box girders under torsion. Structural Engineering and Mechanics, 61(3), 397–406. doi:10.12989/sem.2017.61.3.397.
[9] Ma, S. Q., Muhamad Bunnori, N., & Choong, K. K. (2015). Experimental Study on Reinforced Concrete Box Beam Strengthened by CFRP under Combined Action. Applied Mechanics and Materials, 802, 184–189. doi:10.4028/www.scientific.net/amm.802.184.
[10] Tibhe, S. B., & Rathi, V. R. (2016). Comparative Experimental Study on Torsional Behavior of RC Beam Using CFRP and GFRP Fabric Wrapping. Procedia Technology, 24, 140–147. doi:10.1016/j.protcy.2016.05.020.
[11] Makhlouf, M. (2016). Torsional Behavior of RC Beams with Opening Using (CFRP - GFRP - Steel) Stirrups. Advances in Research, 8(3), 1–10. doi:10.9734/air/2016/30247.
[12] Adheem, A. H. (2017). Experimental and theoretical study for solid and box-section concrete beams strengthened with CFRP laminates under pure torsional loads. International Journal of Engineering Technology and Scientific Innovation, 2(2), 604-618.
[13] Al-Bayati, G., Al-Mahaidi, R., Hashemi, M. J., & Kalfat, R. (2018). Torsional strengthening of RC beams using NSM CFRP rope and innovative adhesives. Composite Structures, 187, 190–202. doi:10.1016/j.compstruct.2017.12.016.
[14] Ma, S., Bunnori, N. M., & Choong, K. K. (2018). Prediction of Ultimate Torque of Reinforced Concrete Box Beam Bonded with CFRP Strips. KSCE Journal of Civil Engineering, 22(11), 4353–4363. doi:10.1007/s12205-018-0872-2.
[15] Al Amli, A. S. A., Al-Ansari, N., & Abtan, Y. G. (2018). Behavior of Repairing Composite I-Section Beams with Opening under Ultimate Torque. Engineering, 10(04), 202–214. doi:10.4236/eng.2018.104014.
[16] Hanoon, A. N., Abdulhameed, A. A., Abdulhameed, H. A., & Mohaisen, S. K. (2019). Energy Absorption Evaluation of CFRP-Strengthened Two-Span Reinforced Concrete Beams under Pure Torsion. Civil Engineering Journal (Iran), 5(9), 2007–2018. doi:10.28991/cej-2019-03091389.
[17] Gowda, C. C., Barros, J. A. O., & Guadagnini, M. (2019). Experimental study of torsional strengthening on thin walled tubular reinforced concrete structures using NSM-CFRP laminates. Composite Structures, 208, 585–599. doi:10.1016/j.compstruct.2018.10.050.
[18] Obaidat, Y. T., Ashteyat, A. M., & Obaidat, A. T. (2020). Performance of RC Beam Strengthened with NSM-CFRP Strip Under Pure Torsion: Experimental and Numerical Study. International Journal of Civil Engineering, 18(5), 585–593. doi:10.1007/s40999-019-00487-2.
[19] Askandar, N., & Mahmood, A. (2019). Comparative investigation on torsional behaviour of RC beam strengthened with CFRP fabric wrapping and near-surface mounted (NSM) Steel Bar. Advances in Civil Engineering, 1-15. doi:10.1155/2019/9061703.
[20] Hekal, G., Ramadan, B., & Meleka, N. (2020). Behavior of RC Beams with Large Openings Subjected to Pure Torsion and Retrofitted by Steel or CFRP Plates. ERJ. Engineering Research Journal, 43(2), 127–138. doi:10.21608/erjm.2020.83910.
[21] Askandar, N. H., Mahmood, A. D., & Kurda, R. (2022). Behaviour of RC beams strengthened with FRP strips under combined action of torsion and bending. European Journal of Environmental and Civil Engineering, 26(9), 4263–4279. doi:10.1080/19648189.2020.1847690.
[22] Gowda, C. C., Barros, J. A. O., Guadagnini, M., & Pereira, E. (2020). Torsional strengthening of tubular type RC beams with NSM technique: Structural performance and cracking process using DIC. Structural Concrete, 22(1), 215–237. doi:10.1002/suco.202000174.
[23] Alrawi, M., & Mahmood, M. (2022). Strengthening Reinforced Beams Subjected to Pure Torsion by Near Surface Mounted Rebars. Anbar Journal for Engineering Sciences, 13(1), 13–22. doi:10.37649/aengs.2022.175876.
[24] Mohammad, A. Q., & Abbas, R. M. (2023). Structural Behavior of Prestressed RC Dapped Beam with Openings Strengthened Using CFRP Sheets. E3S Web of Conferences, 427, 2004. doi:10.1051/e3sconf/202342702004.
[25] Abbas, R. M., & Hussein, L. T. (2023). Transient response and performance of prestressed concrete deep T-beams with large web openings under impact loading. Journal of the Mechanical Behavior of Materials, 32(1), 1–11. doi:10.1515/jmbm-2022-0268.
[26] ACI318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States.
[27] EFNARC. (2002). Specification and Guidelines for Self-Compacting Concrete. European Federation of Producers and Applicators of Specialist Products for Structure. European Federation for Specialist Construction Chemicals and Concrete Systems (EFNARC), Farnham, United Kingdom.
[28] ASTM A615/A615-M-22. (2022). Standard Specifications for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-20.
[29] ASTM C39/C39-17 (2017). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-17.
[30] ASTM C496/C496M-2017. (2017). Standard test for splitting tensile strength of cylindrical concrete specimens ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[31] ASTM C469-02e1. (2010). Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469-02E01.
[32] ASTM C78-09. (2010). Standard test method for flexural strength of concrete (using a simple beam with third-point loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-09.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.