An Experimental Study of Strength Increase in Masonry Wall Reinforced by One-sided Khorasan Mortar with Steel Mesh
Downloads
Doi: 10.28991/CEJ-2023-09-12-019
Full Text: PDF
Downloads
[2] Monaco, A., Minafò, G., Cucchiara, C., D'Anna, J., & La Mendola, L. (2017). Finite element analysis of the out-of-plane behavior of FRP strengthened masonry panels. Composites Part B: Engineering, 115, 188–202. doi:10.1016/j.compositesb.2016.10.016.
[3] Torres, N., Tumialan, J. G., Nanni, A., Bennet, R. M., & De Caso Basalo, F. J. (2022). Flexural Design of Masonry Walls Reinforced with FRP Bars Based on Full-Scale Structural Tests. American Concrete Institute, ACI Special Publication, SP-356, 291–311. doi:10.14359/51737277.
[4] Dong, Z., Deng, M., Dai, J., & Ma, P. (2021). Diagonal compressive behavior of unreinforced masonry walls strengthened with textile reinforced mortar added with short PVA fibers. Engineering Structures, 246. doi:10.1016/j.engstruct.2021.113034.
[5] Castori, G., Corradi, M., & Sperazini, E. (2021). Full size testing and detailed micro-modeling of the in-plane behavior of FRCM–reinforced masonry. Construction and Building Materials, 299. doi:10.1016/j.conbuildmat.2021.124276.
[6] Vienni, C., Salvatori, L., & Orlando, M. (2022). Cyclic shear-compression tests on CRM reinforced brick masonry walls. Procedia Structural Integrity, 44, 2262–2269. doi:10.1016/j.prostr.2023.01.289.
[7] Vienni, C., Orlando, M., & Salvatori, L. (2022). CRM reinforced brick masonry walls: Experimental and parametric numerical investigations. Procedia Structural Integrity, 44, 2270–2277. doi:10.1016/j.prostr.2023.01.290.
[8] D'Antino, T., Carozzi, F. G., & Poggi, C. (2019). Diagonal shear behavior of historic walls strengthened with composite reinforced mortar (CRM). Materials and Structures, 52, 114. doi:10.1617/s11527-019-1414-1.
[9] Biolzi, L., Cattaneo, S., Crespi, P., Scamardo, M., & Vafa, N. (2023). Diagonal compression cyclic testing of unreinforced and reinforced masonry walls. Construction and Building Materials, 363. doi:10.1016/j.conbuildmat.2022.129839.
[10] Ehteshami Moeini, M., Razavi, S. A., Yekrangnia, M., Pourasgari, P., & Abbasian, N. (2022). Cyclic performance assessment of damaged unreinforced masonry walls repaired with steel mesh reinforced shotcrete. Engineering Structures, 253. doi:10.1016/j.engstruct.2021.113747.
[11] Warjri, T., Marbaniang, D. F., & Marthong, C. (2022). In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar. Journal of Structural Integrity and Maintenance, 7(3), 177–187. doi:10.1080/24705314.2022.2048241.
[12] Ullah, S., Farooq, S. H., Usman, M., Ullah, B., Hussain, M., & Hanif, A. (2022). In-Plane Seismic Strengthening of Brick Masonry Using Steel and Plastic Meshes. Materials, 15(11), 4013. doi:10.3390/ma15114013.
[13] Lubin, C., Guerrero, H., Alcocer, S. M., & Lopez Batiz, O. (2023). Experimental Behavior of Confined Masonry Walls Rehabilitated with Reinforced Mortar Jacketing Subjected to Cyclic Loading. Buildings, 13(5), 1314. doi:10.3390/buildings13051314.
[14] Hasnat, A., Ahsan, R., & Yashin, S. M. (2022). Quasi-static in-plane behavior of full-scale unreinforced masonry walls retrofitted using ferro-cement overlay. Asian Journal of Civil Engineering, 23(5), 649–664. doi:10.1007/s42107-022-00447-7.
[15] Šžimşek, E. T. (2018). An Experimental Assessment of Textile and Wire Reinforced Horasan Mortar Strengthening of Brick Walls In Historical Buildings. MS.c. Thesis, I.T.U. Institute of Science and Technology, Istanbul, Turkey.
[16] Torunbalci, N., Ediz, I., & Sutcu, F. (2012). Strengthening a heritage structure with self-compacting concrete: An experimental study. WIT Transactions on State-of-the-art in Science and Engineering, 121. doi:10.2495/978-1-84564-754-4/11.
[17] Torunbalci, N., Onar, E., & Sutcu, F. (2011). An experimental study on alternative CFRP retrofitting applications of heritage structures. International Journal of Sustainable Development and Planning, 6(2), 152–165. doi:10.2495/SDP-V6-N2-152-165.
[18] Garcia-Ramonda, L., Pelí , L., Roca, P., & Camata, G. (2022). Experimental cyclic behaviour of shear masonry walls reinforced with single and double layered Steel Reinforced Grout. Construction and Building Materials, 320. doi:10.1016/j.conbuildmat.2021.126053.
[19] Wang, X., Lam, C. C., & Iu, V. P. (2018). Experimental investigation of in-plane shear behaviour of grey clay brick masonry panels strengthened with SRG. Engineering Structures, 162, 84–96. doi:10.1016/j.engstruct.2018.02.027.
[20] Özsaraç, S. (2009). The Experimental Investigatıon of Constructive Brick Walls Strengthened With Glass Fiber Reinforced Polymer in Masonry Buildings. MSc Thesis, I.T.U. Institute of Science and Technology, Istanbul, Turkey.
[21] Son, S. H., An, J. H., Song, J. H., Hong, Y. S., Jang, H. S., & Eun, H. C. (2021). In-plane strengthening of unreinforced masonry walls by glass fiber-reinforced polyurea. Civil Engineering Journal (Iran), 7(12), 2119–2129. doi:10.28991/cej-2021-03091782.
[22] Khan, I., Gul, A., Shahzada, K., Khan, N. A., Rehman, F. U., Samiullah, Q., & Khattak, M. A. (2021). Computational seismic analysis of dry-stack block masonry wall. Civil Engineering Journal (Iran), 7(3), 488–501. doi:10.28991/cej-2021-03091668.
[23] ElGawady, M. A., Lestuzzi, P., & Badoux, M. (2005). Aseismic retrofitting of unreinforced masonry walls using FRP. Composites Part B: Engineering, 37(2–3), 148–162. doi:10.1016/j.compositesb.2005.06.003.
[24] Ismail, N., & Ingham, J. M. (2016). In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Engineering Structures, 118, 167-177. doi:10.1016/j.engstruct.2016.03.041.
[25] Shermi, C., & Dubey, R. N. (2018). In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar. Construction and Building Materials, 178, 195–203. doi:10.1016/j.conbuildmat.2018.04.081.
[26] Kuterdem, K., Nurlu, M., Tekin, B. M., & Erbay, S. (2013). National Framework In Order To Reduce Earthquakes by Multistakeholder Participation in Turkey: National Earthquake Strategy and Action Plan of Turkey (UDSEP-2023), Turkey.
[27] ASTM E519/E519M-15. (2020). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. Book of Standards Volume: 04.05, 1-5. doi:10.1520/E0519_E0519M-15.
[28] Ashurst, J., & Ashurst, N. (1988). Practical Building Conservation-Mortars, Plasters and Renders. Ashgate Publishing, Farnham, United Kingdom.
[29] Price, C. (1984). Mortars, Cements and Grouts Used in the Conservation of Historic Buildings. Studies in Conservation, 29(1), 52. doi:10.2307/1505946.
[30] Moropoulou, A., Bakolas, A., Moundoulas, P., Aggelakopoulou, E., & Anagnostopoulou, S. (2002). Design and evaluation of restoration mortars for historic masonry using traditional materials and production techniques. Materials Research Society Symposium - Proceedings, 712, 77–82. doi:10.1557/proc-712-ii2.7.
[31] EN 1996-1-1. (2005). Eurocode 6–Design of masonry structures–Part 1-1: general rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels, Belgium.
[32] Petry, S., & Beyer, K. (2014). Scaling unreinforced masonry for reduced-scale seismic testing. Bulletin of Earthquake Engineering, 12(6), 2557–2581. doi:10.1007/s10518-014-9605-1.
[33] Parisi, F., Lignola, G. P., Augenti, N., Prota, A., & Manfredi, G. (2011). Nonlinear Behavior of a Masonry Subassemblage Before and After Strengthening with Inorganic Matrix-Grid Composites. Journal of Composites for Construction, 15(5), 821–832. doi:10.1061/(asce)cc.1943-5614.0000203.
[34] Parisi, F., Menna, C., & Prota, A. (2018). Fabric-reinforced cementitious matrix (FRCM) composites: Mechanical behavior and application to masonry walls. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 199–227. doi:10.1016/B978-0-08-102293-1.00010-3.
[35] Dehghani, A., Fischer, G., & Nateghi Alahi, F. (2015). Strengthening masonry infill panels using engineered cementitious composites. Materials and Structures, 48, 185-204. doi:10.1617/s11527-013-0176-4.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.