The Effects of Rhythm on Building Openings and Fenestrations on Airflow Pattern in Tropical Low-Rise Residential Buildings

Peter I. Oforji, Emeka J. Mba, Francis O. Okeke

Abstract


Effective passive airflow in low-rise residential buildings in hot-humid environment is crucial to maintaining good indoor thermal comfort for occupants. However, investigation of effects of the rhythm of window openings on achieving a passive airflow pattern in such buildings in the tropical climate of sub-Saharan Nigeria have been rarely studied. Therefore, this research aimed to evaluate the effects of the rhythm of window openings on passive airflow patterns for indoor thermal comfort in low-rise residential buildings in the hot-humid environment of Obosi, Nigeria. It involved experimental research using the Anemometer TA465 instrument for measuring wind velocity, relative humidity, and temperature of the purposively designated buildings in the three layouts of the study area for both wet and dry seasons. Employing the Yamane statistical formula, a sample size of 433 was obtained, and questionnaires were administered to occupants of the studied buildings and analyzed using categorical Regression Analysis (CATREG). The regression analysis showed that p=0.000, i.e. p<0.05 indicating that there was a significant relationship between the type and sizes of windows (elements used in measuring rhythm) and the intensity or force of breeze (a measure of passive airflow pattern). Further analysis of the data involved the use of Autodesk CFD 2018 (Computational Fluid Dynamics) for building wind flow simulations. The result showed variations in temperature levels (indications of differences in indoor thermal comfort) of various indoor spaces of the investigated designated floors and buildings, especially ground floors and the top-most floors of the buildings. The study underscored the need to use architectural rhythm design strategies to create a positive impact on airflow patterns in low-rise buildings, especially in densely built-up urban areas. The results of this study are instructive in noting that in order to attain passive airflow in buildings in the face of challenge of land restrictions, vertical stacking of building floors could be used once an adequate rhythm of window openings is adopted.

 

Doi: 10.28991/CEJ-2023-09-08-016

Full Text: PDF


Keywords


Window Openings; Rhythm; Passive Airflow; Residential Buildings; Obosi.

References


Chan, C. S. (2012). Phenomenology of rhythm in design. Frontiers of Architectural Research, 1(3), 253–258. doi:10.1016/j.foar.2012.06.003.

Boisvert, D. R., & Toppinen, T. (2011). Charles Leslie Stevenson. Stanford Encyclopedia of Philosophy. Available online: https://plato.stanford.edu/archives/sum2011/entries/stevenson/ (accessed on June 2023).

Chan, C. S. (1990). Cognitive processes in architectural design problem solving. Design Studies, 11(2), 60–80. doi:10.1016/0142-694X(90)90021-4.

Thapa, R. (2018). Rhythm in Architecture: an Aesthetic Appeal. Journal of the Institute of Engineering, 13(1), 206–214. doi:10.3126/jie.v13i1.20368.

Spence, C. (2020). Senses of place: architectural design for the multisensory mind. Cognitive Research: Principles and Implications, 5(1). doi:10.1186/s41235-020-00243-4.

Mba, E. J., Okeke, F. O., & Okoye, U. (2021). Effects of wall openings on effective natural ventilation for thermal comfort in classrooms of primary schools in Enugu Metropolis, Nigeria. JP Journal of Heat and Mass Transfer, 22(2), 269–304. doi:10.17654/HM022020269.

Nwalusi, D. M., Obi, N. I., Chendo, I. G., & Okeke, F. O. (2022). Climate Responsive Design Strategies for Contemporary Lowrise Residential Buildings in Tropical Environment of Enugu, Nigeria. IOP Conference Series: Earth and Environmental Science, 1054(1), 12052. doi:10.1088/1755-1315/1054/1/012052.

Srivanit, M., & Jareemit, D. (2020). Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburb. Journal of Building Engineering, 30, 101262. doi:10.1016/j.jobe.2020.101262.

Ajay, G. (2021). Effective Fenestration through improved designs & Systems. WFM Media, New Delhi, India. Available online: https://wfmmedia.com/effective-fenestration-through-improved-designs-systems/ (accessed on April 2023).

Okpalike, C., Okeke, F. O., Ezema, E. C., Oforji, P. I., & Igwe, A. E. (2022). Effects of Renovation on Ventilation and Energy Saving in Residential Building. Civil Engineering Journal, 7, 124–134. doi:10.28991/cej-sp2021-07-09.

Bhole, V. (2021). Window and façade magazine - Middle East magazine. 1(6), WFM Media, New Delhi, India. Available online: https://wfmmedia.com/latest_publications/window-facade-magazine-middle-east/ (accessed on April 2023).

Ayoosu, M. I., Lim, Y. W., Leng, P. C., & Idowu, O. M. (2021). Daylighting evaluation and optimisation of window to wall ratio for lecture theatre in the tropical climate. Journal of Daylighting, 8(1), 20–35. doi:10.15627/jd.2021.2.

Okeke, F. O., Chendo, I. G., & Ibem, E. O. (2021). Imprints of security challenges on vernacular architecture of northern Nigeria: A study on Borno State. IOP Conference Series: Earth and Environmental Science, 665(1), 12021. doi:10.1088/1755-1315/665/1/012021.

Heiselberg, P., Bjørn, E., & Nielsen, P. V. (2002). Impact of Open Windows on Room Air Flow and Thermal Comfort. International Journal of Ventilation, 1(2), 91–100. doi:10.1080/14733315.2002.11683625.

Li, Y., Haghighat, F., Andersen, K. T., Brohus, H., Heiselberg, P. K., Dascalaki, E., Fracastoro, G. V., & Perino, M. (1999). Analysis Methods for Natural and Hybrid Ventilation: an IEA ECB Annex 35 Literature Review. Department of Mechanical Engineering, Aalborg University, Aalborg, Denmark.

Ramponi, R., & Blocken, B. (2012). CFD simulation of cross-ventilation flow for different isolated building configurations: Validation with wind tunnel measurements and analysis of physical and numerical diffusion effects. Journal of Wind Engineering and Industrial Aerodynamics, 104–106, 408–418. doi:10.1016/j.jweia.2012.02.005.

Heiselberg, P., & Perino, M. (2010). Short-term airing by natural ventilation - implication on IAQ and thermal comfort. Indoor Air, 20(2), 126–140. doi:10.1111/j.1600-0668.2009.00630.x.

Chang, W. R. (2006). Effect of porous hedge on cross ventilation of a residential building. Building and Environment, 41(5), 549–556. doi:10.1016/j.buildenv.2005.02.032.

Chen, Q. (2009). Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment, 44(4), 848–858. doi:10.1016/j.buildenv.2008.05.025.

Van Hooff, T., & Blocken, B. (2010). On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium. Computers & Fluids, 39(7), 1146–1155. doi:10.1016/j.compfluid.2010.02.004.

Ramponi, R., & Blocken, B. (2012). CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Building and Environment, 53, 34–48. doi:10.1016/j.buildenv.2012.01.004.

Tan, G., & Glicksman, L. R. (2005). Application of integrating multi-zone model with CFD simulation to natural ventilation prediction. Energy and Buildings, 37(10), 1049–1057. doi:10.1016/j.enbuild.2004.12.009.

Larsen, T. S., & Heiselberg, P. (2008). Single-sided natural ventilation driven by wind pressure and temperature difference. Energy and Buildings, 40(6), 1031–1040. doi:10.1016/j.enbuild.2006.07.012.

Reichrath, S., & Davies, T. W. (2002). Using CFD to model the internal climate of greenhouses: Past, present and future. Agronomie, 22(1), 3–19. doi:10.1051/agro:2001006.

Karava, P., Stathopoulos, T., & Athienitis, A. K. (2004). Wind Driven Flow through Openings – A Review of Discharge Coefficients. International Journal of Ventilation, 3(3), 255–266. doi:10.1080/14733315.2004.11683920.

Karava, P., Stathopoulos, T., & Athienitis, A. K. (2006). Impact of internal pressure coefficients on wind-driven ventilation analysis. International Journal of Ventilation, 5(1), 53–66. doi:10.1080/14733315.2006.11683724.

Etheridge, D. W., & Nolan, J. A. (1979). Ventilation measurements at model scale in a turbulent flow. Building and Environment, 14(1), 53–64. doi:10.1016/0360-1323(79)90029-5.

Linden, P. F. (1999). The fluid mechanics of natural ventilation. Annual Review of Fluid Mechanics, 31(1), 201–238. doi:10.1146/annurev.fluid.31.1.201.

Hunt, G. R., & Linden, P. F. (1999). The fluid mechanics of natural ventilation - Displacement ventilation by buoyancy-driven flows assisted by wind. Building and Environment, 34(6), 707–720. doi:10.1016/S0360-1323(98)00053-5.

Jamaludin, N., Khamidi, M. F., Abdul Wahab, S. N., & Klufallah, M. M. A. (2014). Indoor Thermal Environment in Tropical Climate Residential Building. E3S Web of Conferences, 3, 01026. doi:10.1051/e3sconf/20140301026.

Melbourne, W. H. (1980). Turbulence Effects on Maximum Surface Pressures - A Mechanism and Possibility of Reduction. Wind Engineering, 541–551, Pergamon, Oxford, United Kingdom. doi:10.1016/b978-1-4832-8367-8.50055-3.

Guan, Y., Li, A., Zhang, Y., Jiang, C., & Wang, Q. (2016). Experimental and numerical investigation on the distribution characteristics of wind pressure coefficient of airflow around enclosed and open-window buildings. Building Simulation, 9(5), 551–568. doi:10.1007/s12273-016-0283-6.

Wright, N. G., & Hargreaves, D. M. (2006). Unsteady CFD simulations for natural ventilation. International Journal of Ventilation, 5(1), 13–20. doi:10.1080/14733315.2006.11683720.

Van Moeseke, G., Gratia, E., Reiter, S., & De Herde, A. (2005). Wind pressure distribution influence on natural ventilation for different incidences and environment densities. Energy and Buildings, 37(8), 878–889. doi:10.1016/j.enbuild.2004.11.009.

Zhang, A., Gao, C., & Zhang, L. (2005). Numerical simulation of the wind field around different building arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 93(12), 891–904. doi:10.1016/j.jweia.2005.09.001.

Martins, N. R., & da Graça, G. C. (2016). Validation of numerical simulation tools for wind-driven natural ventilation design. Building Simulation, 9(1), 75–87. doi:10.1007/s12273-015-0251-6.

Larsen, T. S., Nikolopoulos, N., Nikolopoulos, A., Strotos, G., & Nikas, K. S. (2011). Characterization and prediction of the volume flow rate aerating a cross ventilated building by means of experimental techniques and numerical approaches. Energy and Buildings, 43(6), 1371–1381. doi:10.1016/j.enbuild.2011.01.015.

van Ellen, L. A., Bridgens, B. N., Burford, N., & Heidrich, O. (2021). Rhythmic Buildings- a framework for sustainable adaptable architecture. Building and Environment, 203, 108068. doi:10.1016/j.buildenv.2021.108068.

Okafor, M. U., Awuzie, B. O., Otasowie, K., Marcel-Okafor, U., & Aigbavboa, C. (2022). Evaluation of Indoor Thermal Comfort Conditions of Residential Traditional and Modern Buildings in a Warm-Humid Climate. Sustainability (Switzerland), 14(19), 12138. doi:10.3390/su141912138.

Mba, E. J., Sam-amobi, C. G., & Okeke, F. O. (2022). An Assessment of Orientation on Effective Natural Ventilation for Thermal Comfort in Primary School Classrooms in Enugu City, Nigeria. European Journal of Sustainable Development, 11(2), 114. doi:10.14207/ejsd.2022.v11n2p114.

Gossauer, E., Leonhart, R., & Wagner, A. (2006). User satisfaction at work--A study in sixteen office buildings. GI Health Engineer, 127(5), 232-240.

Groat, L. N., & Wang, D. (2013). Architectural research methods. John Wiley & Sons, Hoboken, united States.

Development Plan. (2018). Idemili north local government area, accessed from town planning authority office, Anambra State, Nigeria.

Fairley, R. E. (1976). Dynamic Testing of Simulation Software. In Proc. Summer Computer Simulation Conference. Society for Modeling and Simulation International, Washington, United States.

Nicol, F., & Roaf, S. (2005). Post-occupancy evaluation and field studies of thermal comfort. Building Research & Information, 33(4), 338–346. doi:10.1080/09613210500161885.

Lin, B. S., Yu, C. C., Su, A. T., & Lin, Y. J. (2013). Impact of climatic conditions on the thermal effectiveness of an extensive green roof. Building and Environment, 67, 26–33. doi:10.1016/j.buildenv.2013.04.026.

Karava, P., Stathopoulos, T., & Athienitis, A. K. (2011). Airflow assessment in cross-ventilated buildings with operable façade elements. Building and Environment, 46(1), 266–279. doi:10.1016/j.buildenv.2010.07.022.

Conceição, E., Gomes, J., & Awbi, H. (2019). Influence of the airflow in a solar passive building on the indoor air quality and thermal comfort levels. Atmosphere, 10(12), 766. doi:10.3390/ATMOS10120766.

Meakhail, T. (2013). Analysis of Airflow in Multi-room Building for Different Ventilation Patterns. International Journal of Mechanical and Mechatronics Engineering, 13(4), 1-11.

Fanger, P. O. (1972). Thermal comfort: Analysis and applications in environmental engineering. (1972). Applied Ergonomics, 3(3), 181. doi:10.1016/s0003-6870(72)80074-7.

ANSI/ASHRA Standard 55 – 2004. (2004). Thermal environmental conditions for human occupancy. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE), Atlanta, United States.

Wang, L. L., Dols, W. S., & Emmerich, S. J. (2012). Simultaneous solutions of coupled thermal airflow problem for natural ventilation in buildings. HVAC and R Research, 18(1–2), 264–274. doi:10.1080/10789669.2011.591258.

Ayata, T., & Yildiz, O. (2006). Investigating the potential use of natural ventilation in new building designs in Turkey. Energy and Buildings, 38(8), 959–963. doi:10.1016/j.enbuild.2005.10.007.

Ahmad, T., Aibinu, A. A., & Stephan, A. (2019). Managing green building development – A review of current state of research and future directions. Building and Environment, 155, 83–104. doi:10.1016/j.buildenv.2019.03.034.

Illankoon, I. M. C. S., Tam, V. W. Y., Le, K. N., & Shen, L. (2017). Key credit criteria among international green building rating tools. Journal of Cleaner Production, 164, 209–220. doi:10.1016/j.jclepro.2017.06.206.

Gou, Z., & Xie, X. (2017). Evolving green building: triple bottom line or regenerative design? Journal of Cleaner Production, 153, 600–607. doi:10.1016/j.jclepro.2016.02.077.

Lu, S., Fan, M., & Zhao, Y. (2018). A system to pre-evaluate the suitability of energy-saving technology for green buildings. Sustainability (Switzerland), 10(10), 3777. doi:10.3390/su10103777.

Brentano, F. (2014). Psychology from an Empirical Standpoint. Routledge, Milton Park, United Kingdom. doi:10.4324/9781315747446.

Hamzah, B., Gou, Z., Mulyadi, R., & Amin, S. (2018). Thermal comfort analyses of secondary school students in the tropics. Buildings, 8(4), 56. doi:10.3390/buildings8040056.

Stavrakakis, G. M., Koukou, M. K., Vrachopoulos, M. G., & Markatos, N. C. (2008). Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation. Energy and Buildings, 40(9), 1666–1681. doi:10.1016/j.enbuild.2008.02.022.

Schulze, T., & Eicker, U. (2013). Controlled natural ventilation for energy efficient buildings. Energy and Buildings, 56, 221–232. doi:10.1016/j.enbuild.2012.07.044.

Mochida, A., Yoshino, H., Takeda, T., Kakegawa, T., & Miyauchi, S. (2005). Methods for controlling airflow in and around a building under cross-ventilation to improve indoor thermal comfort. Journal of Wind Engineering and Industrial Aerodynamics, 93(6), 437–449. doi:10.1016/j.jweia.2005.02.003.

Raja, I. A., Nicol, J. F., McCartney, K. J., & Humphreys, M. A. (2001). Thermal comfort: Use of controls in naturally ventilated buildings. Energy and Buildings, 33(3), 235–244. doi:10.1016/S0378-7788(00)00087-6.

Nwalusi, D. M., & Okeke, F. O. (2021). Adoption of appropriate technology for building construction in the tropics; A case of Nigeria. IOP Conference Series: Earth and Environmental Science, 730(1), 12013. doi:10.1088/1755-1315/730/1/012013.

Spiru, P., & Simona, P. L. (2017). A review on interactions between energy performance of the buildings, outdoor air pollution and the indoor air quality. Energy Procedia, 128, 179–186. doi:10.1016/j.egypro.2017.09.039.

Vornanen-Winqvist, C., Salonen, H., Järvi, K., Andersson, M. A., Mikkola, R., Marik, T., Kredics, L., & Kurnitski, J. (2018). Effects of ventilation improvement on measured and perceived indoor air quality in a school building with a hybrid ventilation system. International Journal of Environmental Research and Public Health, 15(7), 1414. doi:10.3390/ijerph15071414.

Asere, L., & Blumberga, A. (2018). Energy efficiency - Indoor air quality dilemma in public buildings. Energy Procedia, 147, 445–451. doi:10.1016/j.egypro.2018.07.115.

Asif, A., Zeeshan, M., & Jahanzaib, M. (2018). Indoor temperature, relative humidity and CO2 levels assessment in academic buildings with different heating, ventilation and air-conditioning systems. Building and Environment, 133, 83–90. doi:10.1016/j.buildenv.2018.01.042.

Kelly, F. J., & Fussell, J. C. (2019). Improving indoor air quality, health and performance within environments where people live, travel, learn and work. Atmospheric Environment, 200, 90–109. doi:10.1016/j.atmosenv.2018.11.058.

Congedo, P. M., Baglivo, C., D’Agostino, D., & Zacà, I. (2015). Cost-optimal design for nearly zero energy office buildings located in warm climates. Energy, 91, 967–982. doi:10.1016/j.energy.2015.08.078.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Peter Oforji, Emeka Mba, Francis Okeke

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message