Nutrient-Rich Organic Soil Management Patterns in Light of Climate Change Policy
Downloads
Doi: 10.28991/CEJ-2022-08-10-017
Full Text: PDF
[2] Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., ..., Kissick, K., Belkacemi, M., Malley, J. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. The Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland.
[3] Clarke, D., & Rieley, J. (2010). Strategy for responsible peatland management. International Peat Society, Jyväskylä, Finland.
[4] Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom.
[5] Kasimir-Klemedtsson, í…., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., & Oenema, O. (1997). Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management, 13(s4), 245–250. doi:10.1111/j.1475-2743.1997.tb00595.x.
[6] Barthelmes, A., Couwenberg, J., Risager, M., Tegetmeyer, C., & Joosten, H. (2015). Peatlands and Climate in a Ramsar context. doi:10.6027/tn2015-544.
[7] Tanneberger, F., Tegetmeyer, C., Busse. S., Barthelmes, A., Shumka, S., .., Kirca, S., Mykytiuk, O., Lindsay, R., & Joosten, H. (2017). The peatland map of Europe. Mires and Peat, 19 (22), 1–17. doi: 10.19189/MaP.2016.OMB.264.
[8] LazdiІС, A., Bārdule, A., Butlers, A., LupiÄ·is, A., Petaja, G., Pomanis, K. (2016). Project "Improving the accounting system of CO2 removals and GHG emissions due to management practices in cropland and grassland and development of methodological solutions. Report No. 101115/S109. Available online: https://www.llu.lv/lv/projekti/apstiprinatie-projekti/2021/aramzemes-un-ilggadigo-zalaju-apsaimniekosanas-radito (accessed on August 2022). (In Latvian).
[9] Petaja, G., Okmanis, M., Polmanis, K., Stola, J., Spalva, G., & Jansons, J. (2018). Evaluation of greenhouse gas emissions and area of organic soils in cropland and grassland in Latvia – Integrated national forest inventory data and soil maps approach. Agronomy Research, 16(4), 1809–1823. doi:10.15159/AR.18.183.
[10] Latvia's National Inventory Report. (2021). Greenhouse Gas Emissions in Latvia from 1990 to 2019 in Common Reporting Formats (CRF). United Nations Climate Change. Available online: https://unfccc.int/documents/271530 (accessed on May 2022).
[11] Pilvere, I., Nipers, A., OzoliІС, J., ZariІС, J., Upīte, I., Popluga, D., Kasparinskis, R., Valujeva, K. (2017). Assessment of the contribution of organic soils in Latvian agriculture - assessment of multifactorial influence in the offer of effective land use solutions (K57). INTERREG Europe project BIO4ECO research final report. 32. Available online: https://www.llu.lv/sites/default/files/files/projects/_ORG_AUGSNES_6_0.pdf (accessed on April 2022). (In Latvian).
[12] Ministry of Agriculture of Republic of Latvia (2022). Common Agriculture Policy Strategic Plan 2023 - 2027 for Latvia. Available online: https://www.zm.gov.lv/public/files/CMS_Static_Page_Doc/00/00/02/21/39/KLPSP_projekts_20220118_ SFC2021_izdruka_no_20220318.pdf (accessed on August 2022). (In Latvian)
[13] UNFCCC (2019). Informative Report Strategy of Latvia for the Achievement of Climate Neutrality by 2050. Available online: https://unfccc.int/sites/default/files/resource/LTS1_Latvia.pdf (accessed on May 2022).
[14] LULUCF (2017). Information on LULUCF Actions in Latvia. Progress report under EU Decision 529/2013/EU Article 10. Available online: https://www.zm.gov.lv/public/files/CMS_Static_Page_Doc/00/00/01/03/51/LULUCFactionplan_progress_ report_21042017.pdf (accessed on August 2022).
[15] Lupkina, L., Ratniece, V., Rubene, L., Cakars, I., ..., A., Zustenieks, G., & Gancone, A. (2019). Latvia`s fourth biennial report under the united nations framework convention on climate change. Available online: https://unfccc.int/sites/default/ files/resource/LATVIA_BR4.pdf (accessed on April 2022).
[16] European Environmental Agency (2020). Reporting on Policies and Measures under Article 13 and on Projections under Article 14 of Regulation (EU) No. 525/2013 of the European Parliament and of the Council. Latvia. Available online: https://cdr.eionet.europa.eu/lv/eu/mmr/art04-13-14_lcds_pams_projections/projections/envxqm02w/ (accessed on May 2022).
[17] Ministry of Economics. (2020). National Energy and Climate Plan of Latvia. Ministry of Economics, Riga, Latvia. Available: https://www.em.gov.lv/lv/nacionalais-energetikas-un-klimata-plans (accessed on August 2022). (In Latvian).
[18] Ministry of Agriculture of Republic of Latvia (2020). Rural Development Programme 2014–2020 of Latvia. Ministry of Agriculture, Riva, Latvia. Available online: https://www.zm.gov.lv/zemkopibas-ministrija/statiskas-lapas/latvijas-lauku-attistibas-programma-2014-2020-gadam?id=20631#jump (accessed on August 2022). (In Latvian).
[19] Paquel, K., Bowyer, C., Allen, B., Nesbit, M., Martineau, H., Lesschen, J. P., & Arets, E. J. M. M. (2017). Analysis of LULUCF actions in EU member states as reported under Art. 10 of the LULUCF Decision: Final Study. Institute for European Environmental Policy IEEP, Brussels, Belgium.
[20] Līcīte, I., LupiÄ·is, A., Peters, J., Butlers, A., Armolaitis, K., Soosaar, K., Laiho, R., ÄŒiouldiene, D., & Jauhiainen, J. (2019). Report on the identified climate change mitigation targeted management practices on organic soils. Report No. 2019-A1/3-1. EU LIFE Programme project "Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland”.
[21] Official Statistics of Latvia (2022). Data base, The Central Statistical Bureau terminal (2022). Available online: https://stat.gov.lv/en (accessed on June 2022).
[22] Nikodemus, O. (2019). Latvian soils. Available online: https://enciklopedija.lv/skirklis/26023-Latvijas-augsnes) (accessed on August 2022). (In Latvian).
[23] GEO Latvia (2022). Geoportal, State Regional Development Agency terminal. Available online: https://geolatvija.lv/geo/search) (accessed on May 2022). (In Latvian).
[24] Sauka, O., BuŠ¡amnis, P., Labrencis, V., KļaviІС, U., Barbars, J. (1987). Lauksaimniecības hidrotehniskā meliorācija. Rīga: Zvaigzne, 1987. 1–406. (In Latvian).
[25] Kārklins, A. (2016). Histosol in the context of the Latvian soil classification. Scientific-practical conference "Balanced agriculture", 25-26 February, 2016, Jelgava, Latvia. (In Latvian).
[26] Latvia's National Inventory Report. (2022). Greenhouse Gas Emissions in Latvia from 1990 to 2020 in Common Reporting Formats (CRF). Available online: https://unfccc.int/documents/461908 (accessed on August 2022).
[27] Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. International panel on Climate Change (IPCC), Geneva, Switzerland.
[28] Dugard, P., Todman, J., & Staines, H. (2022). Approaching multivariate analysis: A practical introduction. Taylor & Francis. London, United Kingdom. doi:10.4324/9781003343097.
[29] Hennig, C., Meila, M., Murtagh, F., and Rocci, R. (2015). Handbook of Cluster Analysis, CRC Press: Boca Raton, United States. doi:10.1201/b19706.
[30] Official statistics portal of Latvia. (2021). Size of agricultural holdings, and the utilized agricultural land they manage increased. Official Statistics of Latvia, Riga, Latvia. Available online: https://stat.gov.lv/en/statistics-themes/business-sectors/agriculture/press-releases/7021-provisional-results-agricultural (accessed on August 2022).
[31] Watkins, M.W. (2021). A Step-by-Step Guide to Exploratory Factor Analysis with SPSS. Routledge, New York, United States. doi:10.4324/9781003149347.
[32] Kiryluk-Dryjska, E., Beba, P., & Poczta, W. (2020). Local determinants of the Common Agricultural Policy rural development funds' distribution in Poland and their spatial implications. Journal of Rural Studies, 74, 201–209. doi:10.1016/j.jrurstud.2020.01.018.
[33] Martinho, V. J. P. D., Pereira, J. L. S., & Gonçalves, J. M. (2022). Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production. Soil Systems, 6(2), 32. doi:10.3390/soilsystems6020032.
[34] Dunjó, G., Pardini, G., & Gispert, M. (2003). Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena, 52(1), 23–37. doi:10.1016/S0341-8162(02)00148-0.
[35] Wu, J. (2012). Cluster Analysis and K-means Clustering: An Introduction. In: Advances in K-means Clustering. Springer Theses. Springer, Berlin, Germany. doi:10.1007/978-3-642-29807-3_1.
[36] Kim, H. S., & Park, S. R. (2016). Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water (Switzerland), 8(8), 345. doi:10.3390/w8080345.
[37] Wang, G., Han, Q., & de vries, B. (2019). Assessment of the relation between land use and carbon emission in Eindhoven, the Netherlands. Journal of Environmental Management, 247, 413–424. doi:10.1016/j.jenvman.2019.06.064.
[38] Lee, C. M., Choi, H., Kim, Y., Kim, M. S., Kim, H. K., & Hamm, S. Y. (2021). Characterizing land use effect on shallow groundwater contamination by using self-organizing map and buffer zone. Science of the Total Environment, 800. doi:10.1016/j.scitotenv.2021.149632.
[39] Buschmann, C., Röder, N., Berglund, K., Berglund, Ö., Lí¦rke, P. E., Maddison, M., Mander, íœ., Myllys, M., Osterburg, B., & van den Akker, J. J. H. (2020). Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions. Land Use Policy, 90. doi:10.1016/j.landusepol.2019.104181.
[40] Licite, I., & Popluga, D. (2022). The mapping of climate and agricultural policies targeting organic soil management: case study form Latvia. Paper presented in 22nd International Multidisciplinary Scientific GeoConference SGEM 2022, 2–11 July 2022, Albena, Bulgaria.
[41] European Council. (2014). European Council (23 and 24 October 20140 Conclusions. EUCO 169/14. European Council, Brussels, Belgium Available online: https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf (accessed on August 2022).
[42] Official Journal of the European Union. (2021). Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 ('European Climate Law'). (2021). Official Journal of the European Union. L 243/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119 (accessed on August 2022).
[43] Nipers, A., Pilvere, I., & Zarins, J. (2018). Nipers, A. (2018). Contribution of organic soils to agricultural production and greenhouse gas emissions in Latvia. 18th International Multidisciplinary Scientific GeoConference SGEM2018, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2018/5.1/s20.029.
[44] Pilvere, I., Nipers, A., & Zarins, J. (2018). Pilvere, I. (2018). Use of organic soils in Latvia. 18th International Multidisciplinary Scientific GeoConference SGEM2018, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2018/5.3/s28.125.
[45] Donlan, J., O'Dwyer, J., & Byrne, K. A. (2016). Area estimations of cultivated organic soils in Ireland: Reducing GHG reporting uncertainties. Mires and Peat, 18(15), 1–8. doi:10.19189/MaP.2016.OMB.230.
[46] Kekkonen, H., Ojanen, H., Haakana, M., Latukka, A., & Regina, K. (2019). Mapping of cultivated organic soils for targeting greenhouse gas mitigation. Carbon Management, 10(2), 115–126. doi:10.1080/17583004.2018.1557990.
[47] Wittnebel, M., Tiemeyer, B., & Dettmann, U. (2021). Peat and other organic soils under agricultural use in Germany: Properties and challenges for classification. Mires and Peat, 27(19), 24. doi:10.19189/MaP.2020.SJ.StA.2093.
[48] Roßkopf, N., Fell, H., & Zeitz, J. (2015). Organic soils in Germany, their distribution and carbon stocks. Catena, 133, 157–170. doi:10.1016/j.catena.2015.05.004.
[49] Pilvere, I., Nipers, A., & Zarins, J. (2018). Organic soil area and the geographic location and quality thereof in Latvia. 18th International Multidisciplinary Scientific GeoConference SGEM2018, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2018/5.3/s28.078.
[50] European Commission. (2022). Proposal for a regulation of the European Parliament and of the Council on nature restoration. Brussels, Belgium. Available online: https://environment.ec.europa.eu/publications/nature-restoration-law_en (accessed on August 2022).
[51] Šžahin, U. (2019). Forecasting of Turkey's greenhouse gas emissions using linear and nonlinear rolling metabolic grey model based on optimization. Journal of Cleaner Production, 239, 118079. doi:10.1016/j.jclepro.2019.118079.
[52] Regina, K., Budiman, A., Greve, M. H., Grí¸nlund, A., Kasimir, í…., Lehtonen, H., Petersen, S. O., Smith, P., & Wösten, H. (2016). GHG mitigation of agricultural peatlands requires coherent policies. Climate Policy, 16(4), 522–541. doi:10.1080/14693062.2015.1022854.
[53] Klí¸ve, B., Berglund, K., Berglund, Ö., Weldon, S., & Maljanen, M. (2017). Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environmental Science and Policy, 69, 85–93. doi:10.1016/j.envsci.2016.12.017.
[54] Brown, I. (2020). Challenges in delivering climate change policy through land use targets for afforestation and peatland restoration. Environmental Science and Policy, 107, 36–45. doi:10.1016/j.envsci.2020.02.013.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.