Nutrient-Rich Organic Soil Management Patterns in Light of Climate Change Policy

Ieva Līcīte, Dina Popluga, Pēteris Rivža, Andis Lazdiņš, Raitis Meļņiks


Nutrient-rich organic soil management in agriculture is among the critical sources of greenhouse gas (GHG) emissions globally and at the European level, where the most significant effects are observed in Northern, Eastern, and Central Europe. Growing climate change mitigation targets urge the need to assess and analyze current organic soil management patterns and policy planning and look for appropriate future management strategies. The objectives of this research were to assess the nutrient-rich organic soil management patterns in Latvia during the last decade and to conclude whether organic soil management in agriculture has been climate change mitigation targeted and driven by agriculture support policy. We analyzed the complex, two state-level databases based organic soil data set by using the multidimensional approach of the research methods, including graphical, spatial, correlation, factor, and cluster analysis. Our results revealed the lack of purposeful organic soil management planning in light of the climate change policy in Latvia during the research period and the inexpediency of the agriculture support policy in this regard. The research introduced an innovative methodological approach for the analysis of organic soil management patterns and policy impacts, as well as opened the necessity for a revision of the nutrient-rich organic soil management perspective in light of climate change mitigation targets.


Doi: 10.28991/CEJ-2022-08-10-017

Full Text: PDF


Organic Soil; Agriculture; Climate Change; Factor and Cluster Analysis; Latvia.


Pachauri, R. K. , Allen, M. R. , Barros, V. R. , Broome, J., .., Tschakert, P. , van Vuuren, D. and van Ypserle, J. P. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / R. Pachauri and L. Meyer (editors), The Intergovernmental Panel on Climate Change (IPCC) Geneva, Switzerland.

Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., …, Kissick, K., Belkacemi, M., Malley, J. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. The Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland.

Clarke, D., & Rieley, J. (2010). Strategy for responsible peatland management. International Peat Society, Jyväskylä, Finland.

Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom.

Kasimir-Klemedtsson, Å., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., & Oenema, O. (1997). Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management, 13(s4), 245–250. doi:10.1111/j.1475-2743.1997.tb00595.x.

Barthelmes, A., Couwenberg, J., Risager, M., Tegetmeyer, C., & Joosten, H. (2015). Peatlands and Climate in a Ramsar context. doi:10.6027/tn2015-544.

Tanneberger, F., Tegetmeyer, C., Busse. S., Barthelmes, A., Shumka, S., .., Kirca, S., Mykytiuk, O., Lindsay, R., & Joosten, H. (2017). The peatland map of Europe. Mires and Peat, 19 (22), 1–17. doi: 10.19189/MaP.2016.OMB.264.

Lazdiņš, A., Bārdule, A., Butlers, A., Lupiķis, A., Petaja, G., Pomanis, K. (2016). Project "Improving the accounting system of CO2 removals and GHG emissions due to management practices in cropland and grassland and development of methodological solutions. Report No. 101115/S109. Available online: (accessed on August 2022). (In Latvian).

Petaja, G., Okmanis, M., Polmanis, K., Stola, J., Spalva, G., & Jansons, J. (2018). Evaluation of greenhouse gas emissions and area of organic soils in cropland and grassland in Latvia – Integrated national forest inventory data and soil maps approach. Agronomy Research, 16(4), 1809–1823. doi:10.15159/AR.18.183.

Latvia's National Inventory Report. (2021). Greenhouse Gas Emissions in Latvia from 1990 to 2019 in Common Reporting Formats (CRF). United Nations Climate Change. Available online: (accessed on May 2022).

Pilvere, I., Nipers, A., Ozoliņš, J., Zariņš, J., Upīte, I., Popluga, D., Kasparinskis, R., Valujeva, K. (2017). Assessment of the contribution of organic soils in Latvian agriculture - assessment of multifactorial influence in the offer of effective land use solutions (K57). INTERREG Europe project BIO4ECO research final report. 32. Available online: (accessed on April 2022). (In Latvian).

Ministry of Agriculture of Republic of Latvia (2022). Common Agriculture Policy Strategic Plan 2023 - 2027 for Latvia. Available online: SFC2021_izdruka_no_20220318.pdf (accessed on August 2022). (In Latvian)

UNFCCC (2019). Informative Report Strategy of Latvia for the Achievement of Climate Neutrality by 2050. Available online: (accessed on May 2022).

LULUCF (2017). Information on LULUCF Actions in Latvia. Progress report under EU Decision 529/2013/EU Article 10. Available online: report_21042017.pdf (accessed on August 2022).

Lupkina, L., Ratniece, V., Rubene, L., Cakars, I., …, A., Zustenieks, G., & Gancone, A. (2019). Latvia`s fourth biennial report under the united nations framework convention on climate change. Available online: files/resource/LATVIA_BR4.pdf (accessed on April 2022).

European Environmental Agency (2020). Reporting on Policies and Measures under Article 13 and on Projections under Article 14 of Regulation (EU) No. 525/2013 of the European Parliament and of the Council. Latvia. Available online: (accessed on May 2022).

Ministry of Economics. (2020). National Energy and Climate Plan of Latvia. Ministry of Economics, Riga, Latvia. Available: (accessed on August 2022). (In Latvian).

Ministry of Agriculture of Republic of Latvia (2020). Rural Development Programme 2014–2020 of Latvia. Ministry of Agriculture, Riva, Latvia. Available online: (accessed on August 2022). (In Latvian).

Paquel, K., Bowyer, C., Allen, B., Nesbit, M., Martineau, H., Lesschen, J. P., & Arets, E. J. M. M. (2017). Analysis of LULUCF actions in EU member states as reported under Art. 10 of the LULUCF Decision: Final Study. Institute for European Environmental Policy IEEP, Brussels, Belgium.

Līcīte, I., Lupiķis, A., Peters, J., Butlers, A., Armolaitis, K., Soosaar, K., Laiho, R., Čiouldiene, D., & Jauhiainen, J. (2019). Report on the identified climate change mitigation targeted management practices on organic soils. Report No. 2019-A1/3-1. EU LIFE Programme project “Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland”.

Official Statistics of Latvia (2022). Data base, The Central Statistical Bureau terminal (2022). Available online: (accessed on June 2022).

Nikodemus, O. (2019). Latvian soils. Available online: (accessed on August 2022). (In Latvian).

GEO Latvia (2022). Geoportal, State Regional Development Agency terminal. Available online: (accessed on May 2022). (In Latvian).

Sauka, O., Bušamnis, P., Labrencis, V., Kļaviņš, U., Barbars, J. (1987). Lauksaimniecības hidrotehniskā meliorācija. Rīga: Zvaigzne, 1987. 1–406. (In Latvian).

Kārklins, A. (2016). Histosol in the context of the Latvian soil classification. Scientific-practical conference "Balanced agriculture", 25-26 February, 2016, Jelgava, Latvia. (In Latvian).

Latvia's National Inventory Report. (2022). Greenhouse Gas Emissions in Latvia from 1990 to 2020 in Common Reporting Formats (CRF). Available online: (accessed on August 2022).

Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. International panel on Climate Change (IPCC), Geneva, Switzerland.

Dugard, P., Todman, J., & Staines, H. (2022). Approaching multivariate analysis: A practical introduction. Taylor & Francis. London, United Kingdom. doi:10.4324/9781003343097.

Hennig, C., Meila, M., Murtagh, F., and Rocci, R. (2015). Handbook of Cluster Analysis, CRC Press: Boca Raton, United States. doi:10.1201/b19706.

Official statistics portal of Latvia. (2021). Size of agricultural holdings, and the utilized agricultural land they manage increased. Official Statistics of Latvia, Riga, Latvia. Available online: (accessed on August 2022).

Watkins, M.W. (2021). A Step-by-Step Guide to Exploratory Factor Analysis with SPSS. Routledge, New York, United States. doi:10.4324/9781003149347.

Kiryluk-Dryjska, E., Beba, P., & Poczta, W. (2020). Local determinants of the Common Agricultural Policy rural development funds’ distribution in Poland and their spatial implications. Journal of Rural Studies, 74, 201–209. doi:10.1016/j.jrurstud.2020.01.018.

Martinho, V. J. P. D., Pereira, J. L. S., & Gonçalves, J. M. (2022). Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production. Soil Systems, 6(2), 32. doi:10.3390/soilsystems6020032.

Dunjó, G., Pardini, G., & Gispert, M. (2003). Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena, 52(1), 23–37. doi:10.1016/S0341-8162(02)00148-0.

Wu, J. (2012). Cluster Analysis and K-means Clustering: An Introduction. In: Advances in K-means Clustering. Springer Theses. Springer, Berlin, Germany. doi:10.1007/978-3-642-29807-3_1.

Kim, H. S., & Park, S. R. (2016). Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water (Switzerland), 8(8), 345. doi:10.3390/w8080345.

Wang, G., Han, Q., & de vries, B. (2019). Assessment of the relation between land use and carbon emission in Eindhoven, the Netherlands. Journal of Environmental Management, 247, 413–424. doi:10.1016/j.jenvman.2019.06.064.

Lee, C. M., Choi, H., Kim, Y., Kim, M. S., Kim, H. K., & Hamm, S. Y. (2021). Characterizing land use effect on shallow groundwater contamination by using self-organizing map and buffer zone. Science of the Total Environment, 800. doi:10.1016/j.scitotenv.2021.149632.

Buschmann, C., Röder, N., Berglund, K., Berglund, Ö., Lærke, P. E., Maddison, M., Mander, Ü., Myllys, M., Osterburg, B., & van den Akker, J. J. H. (2020). Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions. Land Use Policy, 90. doi:10.1016/j.landusepol.2019.104181.

Licite, I., & Popluga, D. (2022). The mapping of climate and agricultural policies targeting organic soil management: case study form Latvia. Paper presented in 22nd International Multidisciplinary Scientific GeoConference SGEM 2022, 2–11 July 2022, Albena, Bulgaria.

European Council. (2014). European Council (23 and 24 October 20140 Conclusions. EUCO 169/14. European Council, Brussels, Belgium Available online: (accessed on August 2022).

Official Journal of the European Union. (2021). Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 ('European Climate Law'). (2021). Official Journal of the European Union. L 243/1. Available online: (accessed on August 2022).

Nipers, A., Pilvere, I., & Zarins, J. (2018). Nipers, A. (2018). Contribution of organic soils to agricultural production and greenhouse gas emissions in Latvia. 18th International Multidisciplinary Scientific GeoConference SGEM2018, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2018/5.1/s20.029.

Pilvere, I., Nipers, A., & Zarins, J. (2018). Pilvere, I. (2018). Use of organic soils in Latvia. 18th International Multidisciplinary Scientific GeoConference SGEM2018, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2018/5.3/s28.125.

Donlan, J., O’Dwyer, J., & Byrne, K. A. (2016). Area estimations of cultivated organic soils in Ireland: Reducing GHG reporting uncertainties. Mires and Peat, 18(15), 1–8. doi:10.19189/MaP.2016.OMB.230.

Kekkonen, H., Ojanen, H., Haakana, M., Latukka, A., & Regina, K. (2019). Mapping of cultivated organic soils for targeting greenhouse gas mitigation. Carbon Management, 10(2), 115–126. doi:10.1080/17583004.2018.1557990.

Wittnebel, M., Tiemeyer, B., & Dettmann, U. (2021). Peat and other organic soils under agricultural use in Germany: Properties and challenges for classification. Mires and Peat, 27(19), 24. doi:10.19189/MaP.2020.SJ.StA.2093.

Roßkopf, N., Fell, H., & Zeitz, J. (2015). Organic soils in Germany, their distribution and carbon stocks. Catena, 133, 157–170. doi:10.1016/j.catena.2015.05.004.

Pilvere, I., Nipers, A., & Zarins, J. (2018). Organic soil area and the geographic location and quality thereof in Latvia. 18th International Multidisciplinary Scientific GeoConference SGEM2018, Ecology, Economics, Education and Legislation. doi:10.5593/sgem2018/5.3/s28.078.

European Commission. (2022). Proposal for a regulation of the European Parliament and of the Council on nature restoration. Brussels, Belgium. Available online: (accessed on August 2022).

Şahin, U. (2019). Forecasting of Turkey's greenhouse gas emissions using linear and nonlinear rolling metabolic grey model based on optimization. Journal of Cleaner Production, 239, 118079. doi:10.1016/j.jclepro.2019.118079.

Regina, K., Budiman, A., Greve, M. H., Grønlund, A., Kasimir, Å., Lehtonen, H., Petersen, S. O., Smith, P., & Wösten, H. (2016). GHG mitigation of agricultural peatlands requires coherent policies. Climate Policy, 16(4), 522–541. doi:10.1080/14693062.2015.1022854.

Kløve, B., Berglund, K., Berglund, Ö., Weldon, S., & Maljanen, M. (2017). Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environmental Science and Policy, 69, 85–93. doi:10.1016/j.envsci.2016.12.017.

Brown, I. (2020). Challenges in delivering climate change policy through land use targets for afforestation and peatland restoration. Environmental Science and Policy, 107, 36–45. doi:10.1016/j.envsci.2020.02.013.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-017


  • There are currently no refbacks.

Copyright (c) 2022 Ieva Līcīte, Dina Popluga, Pēteris Rivža, Andis Lazdiņš, Raitis Meļņiks

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.