Some Approaches to the Prediction of Permeability Parameters in a Finite Element Program for Early Warning

Krairoj Mahannopkul, Chollada Kanjanakul

Abstract


Recently, landslides often occurred in natural soil slopes in the tropical region, which correlate with the rainy season. Rainfall infiltration leads to groundwater level fluctuations. The increased positive pore-water pressures due to rainfall influence have affected the properties and behavior of the unsaturated soil slope. In this research, the Finite Element Method of SEEP/W and SLOPE/W analyzes the factor safety of the slope affected by pore water pressure change due to rainfall. The Soil Water Characteristic Curve (SWCC) and Hydraulic Conductivity function were obtained from sieve analysis and Atterberg's limit. In addition, unsaturated soil properties from the UNSODA code are estimated based on grain-size distribution using the SWRC program. The study area is in Khanom District, southern Thailand. The results show that the soil slope at the site became unstable on November 18, 2021, with F.S. = 1.0, which agrees well with the date of the disaster. In conclusion, the slope stability analysis without the parameters from the unsaturated soil hydraulic database (UNSODA) leads to the F.S. value being higher than the actual value, and the alarm estimation would be inaccurate.

 

Doi: 10.28991/CEJ-2022-08-12-014

Full Text: PDF


Keywords


Soil Water Characteristic Curve (SWCC); Unsaturated Soil Hydraulic Database (UNSODA); Early Warning; Slope Stability Analysis; Rainfall Infiltration.

References


Salee, R., Chinkulkijniwat, A., Yubonchit, S., Horpibulsuk, S., Wangfaoklang, C., & Soisompong, S. (2022). New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration. Natural Hazards, 113(1), 125–141. doi:10.1007/s11069-022-05292-0.

Yang, H., Wei, F., Ma, Z., Guo, H., Su, P., & Zhang, S. (2020). Rainfall threshold for landslide activity in Dazhou, southwest China. Landslides, 17(1), 61–77. doi:10.1007/s10346-019-01270-z.

Kardani, N., Zhou, A., Nazem, M., & Shen, S. L. (2021). Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. Journal of Rock Mechanics and Geotechnical Engineering, 13(1), 188–201. doi:10.1016/j.jrmge.2020.05.011.

Zheng, Q., Lyu, H. M., Zhou, A., & Shen, S. L. (2021). Risk assessment of geohazards along Cheng-Kun railway using fuzzy AHP incorporated into GIS. Geomatics, Natural Hazards and Risk, 12(1), 1508–1531. doi:10.1080/19475705.2021.1933614.

Segoni, S., Piciullo, L., & Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides, 15(8), 1483–1501. doi:10.1007/s10346-018-0966-4.

Teja, T. S., Dikshit, A., & Satyam, N. (2019). Determination of rainfall thresholds for landslide prediction using an algorithm-based approach: Case study in the Darjeeling Himalayas, India. Geosciences (Switzerland), 9(7), 302. doi:10.3390/geosciences9070302.

Zhao, Y., Meng, X., Qi, T., Qing, F., Xiong, M., Li, Y., Guo, P., & Chen, G. (2020). AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China. Geomorphology, 359, 107125. doi:10.1016/j.geomorph.2020.107125.

Jiang, Z., Fan, X., Siva Subramanian, S., Yang, F., Tang, R., Xu, Q., & Huang, R. (2021). Probabilistic rainfall thresholds for debris flows occurred after the Wenchuan earthquake using a Bayesian technique. Engineering Geology, 280, 105965. doi:10.1016/j.enggeo.2020.105965.

Chen, Y., Hu, R., Zhou, C., Li, D., & Rong, G. (2011). A new parabolic variational inequality formulation of Signorini’s condition for non-steady seepage problems with complex seepage control systems. International Journal for Numerical and Analytical Methods in Geomechanics, 35(9), 1034–1058. doi:10.1002/nag.944.

Liu, W., Luo, X., Huang, F., & Fu, M. (2017). Uncertainty of the soil-water characteristic curve and its effects on slope seepage and stability analysis under conditions of rainfall using the Markov chain Monte Carlo method. Water (Switzerland), 9(10), 758. doi:10.3390/w9100758.

Hamdany, A. H., Shen, Y., Satyanaga, A., Rahardjo, H., Lee, T. T. D., & Nong, X. (2022). Field instrumentation for real-time measurement of soil-water characteristic curve. International Soil and Water Conservation Research, 10(4), 586–596. doi:10.1016/j.iswcr.2022.01.007.

Wang, L., Tang, L., Wang, Z., Liu, H., & Zhang, W. (2020). Probabilistic characterization of the soil-water retention curve and hydraulic conductivity and its application to slope reliability analysis. Computers and Geotechnics, 121, 103460. doi:10.1016/j.compgeo.2020.103460.

Dafalla, M. A., Al-Mahbashi, A. M., Almajed, A., & Al-Shamrani, M. (2020). Predicting Soil-Water Characteristic Curves of Clayey Sand Soils Using Area Computation. Mathematical Problems in Engineering, 2020(4548912). doi:10.1155/2020/4548912.

Wang, Z., Li, X., Shi, H., Li, W., Yang, W., & Qin, Y. (2020). Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore-size distribution. Geoderma, 370, 114341. doi:10.1016/j.geoderma.2020.114341.

Zhou, J., Ren, J., & Li, Z. (2021). An Improved Prediction Method of Soil-Water Characteristic Curve by Geometrical Derivation and Empirical Equation. Mathematical Problems in Engineering, 2021(9956824). doi:10.1155/2021/9956824.

Zhou, W. H., Yuen, K. V., & Tan, F. (2014). Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities. Engineering Geology, 179, 1–9. doi:10.1016/j.enggeo.2014.06.013.

Minasny, B., McBratney, A. B., & Bristow, K. L. (1999). Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93(3–4), 225–253. doi:10.1016/S0016-7061(99)00061-0.

Chiu, C. F., Yan, W. M., & Yuen, K. V. (2012). Estimation of water retention curve of granular soils from particle-size distribution - a Bayesian probabilistic approach. Canadian Geotechnical Journal, 49(9), 1024–1035. doi:10.1139/T2012-062.

Wang, L., Zhang, W., & Chen, F. (2019). Bayesian approach for predicting soil-water characteristic curve from particle-size distribution data. Energies, 14(15), 2992. doi:10.3390/en12152992.

Brooks, R. H., & Corey, A. T. (1964). Hydraulic Properties of Porous Media and Their Relation to Drainage Design. Transactions of the ASAE, 7(1), 0026–0028. doi:10.13031/2013.40684.

Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x.

Kosugi, K. (1994). Three‐parameter lognormal distribution model for soil water retention. Water Resources Research, 30(4), 891–901. doi:10.1029/93WR02931.

Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. doi:10.1139/t94-061.

Kosugi, K. (1999). General Model for Unsaturated Hydraulic Conductivity for Soils with Lognormal Pore-Size Distribution. Soil Science Society of America Journal, 63(2), 270–277. doi:10.2136/sssaj1999.03615995006300020003x.

Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). Shear Strength of Unsaturated Soils. Canadian Geotechnical Journal, 15(3), 313–321. doi:10.1139/t78-029.

Liu, Y., Tian, G., Wang, S., Satyanaga, A., & Zhai, Q. (2022). Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration. Urban Science, 6(3), 54. doi:10.3390/urbansci6030054.

Das, P., Patwa, D., Vishnu, G., & Bharat, T. V. (2022). Influencing factors on the simulation of rainfall-induced landslide prediction based on case study. Bulletin of Engineering Geology and the Environment, 81(5), 194. doi:10.1007/s10064-022-02682-3.

Zhang, Z., Fu, X., Sheng, Q., Du, Y., Zhou, Y., & Huang, J. (2021). Stability of Cracking Deposit Slope Considering Parameter Deterioration Subjected to Rainfall. International Journal of Geomechanics, 21(7), 5021001. doi:10.1061/(asce)gm.1943-5622.0002045.

Wang, C., Li, S., He, X., Chen, Q., Zhang, H., & Liu, X. (2021). Improved prediction of water retention characteristic based on soil gradation and clay fraction. Geoderma, 404, 115293. doi:10.1016/j.geoderma.2021.115293.

Kanjanakul, C., Chub-uppakarn, T., & Chalermyanont, T. (2016). Rainfall thresholds for landslide early warning system in Nakhon Si Thammarat. Arabian Journal of Geosciences, 9(11), 584. doi:10.1007/s12517-016-2614-4.

Linsley, R. K., Kohler, M. A., & Paulhus, J. L. H. (1982). Hydrology for engineers (3rd Ed.). McGraw-Hill Book Company, New York. United States.

Okada, K., Sugiyama, T., Muraishi, H., Noguchi, T., & Samizo, M. (1994). Statistical risk estimating method for rainfall on surface collapse of cut slope. Soils and Foundations, 34(3), 49–58. doi:10.3208/sandf1972.34.3_49.

Soralump, S. (2010). Rainfall-triggered landslide: from research to mitigation practice in Thailand. Geotechnical Engineering, 41(1), 1-39.

Mairaing, W., Jotisankasa, A., & Soralump, S. (2012). Some applications of unsaturated soil mechanics in Thailand: an appropriate technology approach. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 43(1), 1-11.

Jotisankasa, A., Mahannopkul, K., & Sawangsuriya, A. (2015). Slope stability and pore-water pressure regime in response to rainfall: A case study of granitic fill slope in northern Thailand. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 46(1), 45-54.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-014

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 chollada - kanjanakul

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message