Some Approaches to the Prediction of Permeability Parameters in a Finite Element Program for Early Warning
Abstract
Doi: 10.28991/CEJ-2022-08-12-014
Full Text: PDF
Keywords
References
Salee, R., Chinkulkijniwat, A., Yubonchit, S., Horpibulsuk, S., Wangfaoklang, C., & Soisompong, S. (2022). New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration. Natural Hazards, 113(1), 125–141. doi:10.1007/s11069-022-05292-0.
Yang, H., Wei, F., Ma, Z., Guo, H., Su, P., & Zhang, S. (2020). Rainfall threshold for landslide activity in Dazhou, southwest China. Landslides, 17(1), 61–77. doi:10.1007/s10346-019-01270-z.
Kardani, N., Zhou, A., Nazem, M., & Shen, S. L. (2021). Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. Journal of Rock Mechanics and Geotechnical Engineering, 13(1), 188–201. doi:10.1016/j.jrmge.2020.05.011.
Zheng, Q., Lyu, H. M., Zhou, A., & Shen, S. L. (2021). Risk assessment of geohazards along Cheng-Kun railway using fuzzy AHP incorporated into GIS. Geomatics, Natural Hazards and Risk, 12(1), 1508–1531. doi:10.1080/19475705.2021.1933614.
Segoni, S., Piciullo, L., & Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides, 15(8), 1483–1501. doi:10.1007/s10346-018-0966-4.
Teja, T. S., Dikshit, A., & Satyam, N. (2019). Determination of rainfall thresholds for landslide prediction using an algorithm-based approach: Case study in the Darjeeling Himalayas, India. Geosciences (Switzerland), 9(7), 302. doi:10.3390/geosciences9070302.
Zhao, Y., Meng, X., Qi, T., Qing, F., Xiong, M., Li, Y., Guo, P., & Chen, G. (2020). AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China. Geomorphology, 359, 107125. doi:10.1016/j.geomorph.2020.107125.
Jiang, Z., Fan, X., Siva Subramanian, S., Yang, F., Tang, R., Xu, Q., & Huang, R. (2021). Probabilistic rainfall thresholds for debris flows occurred after the Wenchuan earthquake using a Bayesian technique. Engineering Geology, 280, 105965. doi:10.1016/j.enggeo.2020.105965.
Chen, Y., Hu, R., Zhou, C., Li, D., & Rong, G. (2011). A new parabolic variational inequality formulation of Signorini’s condition for non-steady seepage problems with complex seepage control systems. International Journal for Numerical and Analytical Methods in Geomechanics, 35(9), 1034–1058. doi:10.1002/nag.944.
Liu, W., Luo, X., Huang, F., & Fu, M. (2017). Uncertainty of the soil-water characteristic curve and its effects on slope seepage and stability analysis under conditions of rainfall using the Markov chain Monte Carlo method. Water (Switzerland), 9(10), 758. doi:10.3390/w9100758.
Hamdany, A. H., Shen, Y., Satyanaga, A., Rahardjo, H., Lee, T. T. D., & Nong, X. (2022). Field instrumentation for real-time measurement of soil-water characteristic curve. International Soil and Water Conservation Research, 10(4), 586–596. doi:10.1016/j.iswcr.2022.01.007.
Wang, L., Tang, L., Wang, Z., Liu, H., & Zhang, W. (2020). Probabilistic characterization of the soil-water retention curve and hydraulic conductivity and its application to slope reliability analysis. Computers and Geotechnics, 121, 103460. doi:10.1016/j.compgeo.2020.103460.
Dafalla, M. A., Al-Mahbashi, A. M., Almajed, A., & Al-Shamrani, M. (2020). Predicting Soil-Water Characteristic Curves of Clayey Sand Soils Using Area Computation. Mathematical Problems in Engineering, 2020(4548912). doi:10.1155/2020/4548912.
Wang, Z., Li, X., Shi, H., Li, W., Yang, W., & Qin, Y. (2020). Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore-size distribution. Geoderma, 370, 114341. doi:10.1016/j.geoderma.2020.114341.
Zhou, J., Ren, J., & Li, Z. (2021). An Improved Prediction Method of Soil-Water Characteristic Curve by Geometrical Derivation and Empirical Equation. Mathematical Problems in Engineering, 2021(9956824). doi:10.1155/2021/9956824.
Zhou, W. H., Yuen, K. V., & Tan, F. (2014). Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities. Engineering Geology, 179, 1–9. doi:10.1016/j.enggeo.2014.06.013.
Minasny, B., McBratney, A. B., & Bristow, K. L. (1999). Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93(3–4), 225–253. doi:10.1016/S0016-7061(99)00061-0.
Chiu, C. F., Yan, W. M., & Yuen, K. V. (2012). Estimation of water retention curve of granular soils from particle-size distribution - a Bayesian probabilistic approach. Canadian Geotechnical Journal, 49(9), 1024–1035. doi:10.1139/T2012-062.
Wang, L., Zhang, W., & Chen, F. (2019). Bayesian approach for predicting soil-water characteristic curve from particle-size distribution data. Energies, 14(15), 2992. doi:10.3390/en12152992.
Brooks, R. H., & Corey, A. T. (1964). Hydraulic Properties of Porous Media and Their Relation to Drainage Design. Transactions of the ASAE, 7(1), 0026–0028. doi:10.13031/2013.40684.
Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x.
Kosugi, K. (1994). Three‐parameter lognormal distribution model for soil water retention. Water Resources Research, 30(4), 891–901. doi:10.1029/93WR02931.
Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. doi:10.1139/t94-061.
Kosugi, K. (1999). General Model for Unsaturated Hydraulic Conductivity for Soils with Lognormal Pore-Size Distribution. Soil Science Society of America Journal, 63(2), 270–277. doi:10.2136/sssaj1999.03615995006300020003x.
Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). Shear Strength of Unsaturated Soils. Canadian Geotechnical Journal, 15(3), 313–321. doi:10.1139/t78-029.
Liu, Y., Tian, G., Wang, S., Satyanaga, A., & Zhai, Q. (2022). Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration. Urban Science, 6(3), 54. doi:10.3390/urbansci6030054.
Das, P., Patwa, D., Vishnu, G., & Bharat, T. V. (2022). Influencing factors on the simulation of rainfall-induced landslide prediction based on case study. Bulletin of Engineering Geology and the Environment, 81(5), 194. doi:10.1007/s10064-022-02682-3.
Zhang, Z., Fu, X., Sheng, Q., Du, Y., Zhou, Y., & Huang, J. (2021). Stability of Cracking Deposit Slope Considering Parameter Deterioration Subjected to Rainfall. International Journal of Geomechanics, 21(7), 5021001. doi:10.1061/(asce)gm.1943-5622.0002045.
Wang, C., Li, S., He, X., Chen, Q., Zhang, H., & Liu, X. (2021). Improved prediction of water retention characteristic based on soil gradation and clay fraction. Geoderma, 404, 115293. doi:10.1016/j.geoderma.2021.115293.
Kanjanakul, C., Chub-uppakarn, T., & Chalermyanont, T. (2016). Rainfall thresholds for landslide early warning system in Nakhon Si Thammarat. Arabian Journal of Geosciences, 9(11), 584. doi:10.1007/s12517-016-2614-4.
Linsley, R. K., Kohler, M. A., & Paulhus, J. L. H. (1982). Hydrology for engineers (3rd Ed.). McGraw-Hill Book Company, New York. United States.
Okada, K., Sugiyama, T., Muraishi, H., Noguchi, T., & Samizo, M. (1994). Statistical risk estimating method for rainfall on surface collapse of cut slope. Soils and Foundations, 34(3), 49–58. doi:10.3208/sandf1972.34.3_49.
Soralump, S. (2010). Rainfall-triggered landslide: from research to mitigation practice in Thailand. Geotechnical Engineering, 41(1), 1-39.
Mairaing, W., Jotisankasa, A., & Soralump, S. (2012). Some applications of unsaturated soil mechanics in Thailand: an appropriate technology approach. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 43(1), 1-11.
Jotisankasa, A., Mahannopkul, K., & Sawangsuriya, A. (2015). Slope stability and pore-water pressure regime in response to rainfall: A case study of granitic fill slope in northern Thailand. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 46(1), 45-54.
DOI: 10.28991/CEJ-2022-08-12-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 chollada - kanjanakul
This work is licensed under a Creative Commons Attribution 4.0 International License.