Computational Fluid Dynamics (CFD) Simulation of Mesh Jet Devices for Promising Energy-Saving Technologies

Yuri A. Sazonov, Mikhail A. Mokhov, Inna V. Gryaznova, Victoria V. Voronova, Khoren A. Tumanyan, Mikhail A. Frankov, Nikolay N. Balaka


This paper discusses the development of mesh jet devices for hybrid turbines, including developing Euler's ideas, and considers a new patented version of a mesh jet device designed to create guiding devices for turbines. The research methods are based on simulations using CFD and additive technologies. An intermediate conclusion is that a new scientific direction for the study and creation of mesh jet control systems has been formed as part of developing Euler's ideas. Calculation methods showed possible improvements in the performance of jet devices, including the use of curved tubes proposed by Euler to create turbines. This study shows that at the nozzle or mixing chamber outlet, the jet can deflect by an angle from +180° to -180° within the geometric sphere. This study also shows that the scientific groundwork prepared by Euler is not yet fully understood. The ongoing research mainly focuses on creating multi-mode jet devices designed for control systems for mesh turbomachines. Here, power consumption from an external source can be reduced to save energy. Some results of ongoing studies can also be applied in other industries (for example, when creating hybrid propulsion systems or propulsors). The scientific novelty of this work consists of improving the design methodology of jet machinery and turbomachines.


Doi: 10.28991/CEJ-2022-08-12-06

Full Text: PDF


CFD; Energy Saving; Jet Device; Nozzle; Mixing Chamber; Turbomachine; Fluid Dynamics.


Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Development and prototyping of jet systems for advanced turbomachinery with mesh rotor. Emerging Science Journal, 5(5), 775–801. doi:10.28991/esj-2021-01311.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of mesh turbomachinery based on the Euler turbine. Energies, 14(17), 5292. doi:10.3390/en14175292.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of jet systems for developing mesh turbomachines. International Review of Mechanical Engineering, 15(7), 335–345. doi:10.15866/ireme.v15i7.21163.

Sazonov, Y. A., Mokhov M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, KH. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and Research of Mesh Jet Systems. International Journal of Mechanical Engineering, 6(3), 22-42.

Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2020). Prototyping mesh turbine with the jet control system. Periódico Tchê Química, 17, 1160-1175.

Sazonov, Y. A., Mokhov, M. A., & Tumanyan, KH. A. (2022). Utility model Patent No. 209663 of the Russian Federation U1, IPC F03B 5/00, Moscow, Russia.

Liu, Y. P., Wang, X. S., Zhu, P., Li, G. C., Ni, X. M., & Zhang, J. (2019). Experimental study on gas jet suppressed by water mist: A clean control technique in natural gas leakage incidents. Journal of Cleaner Production, 223, 163-175. doi:10.1016/j.jclepro.2019.03.107.

Rendón, M. A., Assato, M., Martins, V. A., Hallak, P. H., Altgott, A. S., Graça, R., ... & Delmonte, R. G. P. (2022). Design method and performance analysis of a hybrid-electric power-train applied in a 30-passenger aircraft. Journal of Cleaner Production, 339, 130560. doi:10.1016/j.jclepro.2022.130560.

Ma, T., Wang, X., Qiao, N., Zhang, Z., Fu, J., & Bao, M. (2022). A Conceptual Design and Optimization Approach for Distributed Electric Propulsion eVTOL Aircraft Based on Ducted-Fan Wing Unit. Aerospace, 9(11), 690. doi:10.3390/aerospace9110690.

Morozov, A. V., Nazarov, E. A., & Pokotilo, S. A. (2022). The patent for invention No. 2777459 of the Russian Federation. Method of creating aerodynamic forces on an aircraft wing and a device for its implementation. Moscow, Russia.

Xia, J., & Zhou, Z. (2022). Model Predictive Control Based on ILQR for Tilt-Propulsion UAV. Aerospace, 9(11), 688. doi:10.3390/aerospace9110688.

Wang, R., Zhang, G., Ying, P., & Ma, X. (2022). Effects of Key Parameters on Airfoil Aerodynamics Using Co-Flow Jet Active Flow Control. Aerospace, 9(11), 649. doi:10.3390/aerospace9110649.

Friedmann, G. (1952). US Patent 2623474. Injection mixer. United States Patent Office, Alexandria, United States.

Kalachev, V. V. (2017). Jet pumps: theory, calculation and design. Omega, Moscow, Russia.

Wheatley, M. J. (1997). Apparatus for energy transfer. UK Patent Application, GB No: 2310005, London, United Kingdom.

Han, J., Feng, J., Hou, T., & Peng, X. (2021). Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system. International Journal of Energy Research, 45(2), 3031–3048. doi:10.1002/er.5996.

Arun Kumar, R., & Rajesh, G. (2018). Physics of vacuum generation in zero-secondary flow ejectors. Physics of Fluids, 30(6), 66102. doi:10.1063/1.5030073.

Chen, W., Xue, K., Chen, H., Chong, D., & Yan, J. (2018). Experimental and Numerical Analysis on the Internal Flow of Supersonic Ejector under Different Working Modes. Heat Transfer Engineering, 39(7–8), 700–710. doi:10.1080/01457632.2017.1325686.

Sri Ramya, E., Lovaraju, P., Dakshina Murthy, I., Thanigaiarasu, S., & Rathakrishnan, E. (2020). Experimental and computational investigations on flow characteristics of supersonic ejector. International Review of Aerospace Engineering, 13(1), 1–9. doi:10.15866/irease.v13i1.18108.

Vojta, L., & Dvorak, V. (2019). Measurement and calculating of supersonic ejectors. EPJ Web of Conferences, 213, 02097. doi:10.1051/epjconf/201921302097.

Falsafioon, M., Aidoun, Z., & Ameur, K. (2019). Numerical investigation on the effects of internal flow structure on ejector performance. Journal of Applied Fluid Mechanics, 12(6), 2003–2015. doi:10.29252/JAFM.12.06.29895.

Bharate, G., & Kumar R, A. (2021). Starting transients in second throat vacuum ejectors for high altitude testing facilities. Aerospace Science and Technology, 113. doi:10.1016/j.ast.2021.106687.

Skaggs, B. D. (1997). U.S. Patent No. 5,628,623: Fluid ejector and ejection method. United States Patent Office, Alexandria, United States.

Dodge, A. Y. (195). U.S. Patent No. 3,188,976. Jet pump. United States Patent Office, Alexandria, United States.

Samuel, L. (1968). U.S. Patent No. 3,385,030. Process for scrubbing a gas stream containing particulate material. United States Patent Office, Alexandria, United States.

Asgarnejad, S., Kouhikamali, R., & Hassani, M. (2022). Triple-Nozzle Thermo-Compressor: Geometrical Investigation and Comparison with Single-Nozzle Thermo-Compressor. Journal of Applied Fluid Mechanics, 15(6), 1693–1702. doi:10.47176/jafm.15.06.1316.

Bayles, W. H., & Nash, B. C. (1962). U.S. Patent No. 3,064,878: Method and apparatus for high performance evacuation system. United States Patent Office, Alexandria, United States.

Volker, M., & Sausner, A. (2018). U.S. Patent No. 10,072,674: Suction jet pump. United States Patent Office, Alexandria, United States.

Liu, J. F., Luo, Z. B., Deng, X., Zhao, Z. J., Li, S. Q., Liu, Q., & Zhu, Y. X. (2022). Dual Synthetic Jets Actuator and Its Applications—Part II: Novel Fluidic Thrust-Vectoring Method Based on Dual Synthetic Jets Actuator. Actuators, 11(8), 209. doi:10.3390/act11080209.

Shakouchi, T., & Fukushima, S. (2022). Fluidic Thrust, Propulsion, Vector Control of Supersonic Jets by Flow Entrainment and the Coanda Effect. Energies, 15(22), 8513. doi:10.3390/en15228513.

Chanut, P. L. J. (1964). U.S. Patent No. 3,013,494. Guided Missile. United States Patent Office, Alexandria, United States

Sota Jr, C. G., Callis, G. J., & Masse, R. K. (2007). U.S. Patent No. 7,155,898: Thrust vector control system for a plug nozzle rocket engine. United States Patent Office, Alexandria, United States.

Maré, J. C. (2021). Review and analysis of the reasons delaying the entry into service of power-by-wire actuators for high-power safety-critical applications. Actuators, 10(9), 233. doi:10.3390/act10090233.

Aerospaceweb (2018). Missile Control Systems. Available online: (accessed on August 2022).

Abugov, D. I., & Bobylev, V. M. (1987). Theory and calculation of solid propellant rocket engines. Mechanical engineering, Moscow, Russia.

Ferlauto, M., Ferrero, A., Marsicovetere, M., & Marsilio, R. (2021). Differential throttling and fluidic thrust vectoring in a linear aerospike. International Journal of Turbomachinery, Propulsion and Power, 6(2), 8. doi:10.3390/ijtpp6020008.

Bailey, J. M. (1982). U.S. Patent No. 4,355,949: Control system and nozzle for impulse turbines. United States Patent Office, Alexandria, United States.

Decaix, J., & Münch-Alligné, C. (2022). Geometry, Mesh and Numerical Scheme Influencing the Simulation of a Pelton Jet with the OpenFOAM Toolbox. Energies, 15(19), 7451. doi:10.3390/en15197451.

Hickerson, F. R. (1965). U.S. Patent No. 3,192,714: Variable thrust rocket engine incorporating thrust vector control. United States Patent Office, Alexandria, United States.

Kinsey, L. E., & Cavalleri, R. J. (2013). U.S. Patent No. 8,387,360: Integral thrust vector and roll control system. United States Patent Office, Alexandria, United States.

Plumpe Jr., William, H. (2003). U. S. Patent No. 6,622,472: Apparatus and method for thrust vector control. United States Patent Office, Alexandria, United States.

Liu, B., Gao, Y., Gao, L., Zhang, J., Zhu, Y., Zang, X., & Zhao, J. (2022). Design and Experimental Study of a Turbojet VTOL Aircraft with One-Dimensional Thrust Vectoring Nozzles. Aerospace, 9(11), 678. doi:10.3390/aerospace9110678.

Dellali, R., & Kadja, M. (2019). Study of turbulent flow through a thrust reverser. International Review of Mechanical Engineering, 13(3), 173–184. doi:10.15866/ireme.v13i3.16306.

Bhadran, A., Manathara, J. G., & Ramakrishna, P. A. (2022). Thrust Control of Lab-Scale Hybrid Rocket Motor with Wax-Aluminum Fuel and Air as Oxidizer. Aerospace, 9(9). doi:10.3390/aerospace9090474.

Jing, Q., Xu, W., Ye, W., & Li, Z. (2022). The Relationship between Contraction of the Ejector Mixing Chamber and Supersonic Jet Mixing Layer Development. Aerospace, 9(9), 469. doi:10.3390/aerospace9090469.

Donateo, T., Spada Chiodo, L., Ficarella, A., & Lunaro, A. (2022). Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility. Energies, 15(20), 7598. doi:10.3390/en15207598.

Sazonov, Y. A. (2012). Fundamentals of calculation and design of pump-ejector installations. SUE “Oil and Gas Publishing House” of Gubkin University: Moscow, Russia.

Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A. Voronova, V. V., & Balaka, N. N. (2022). The patent for the utility model of the Russian Federation No. 214452. Jet installation, Moscow, Russian Federation.

Lavrentyev, M. A., Yushkevich, A. P., & Grigoryan, A. T. (1958). Leonhard Euler. Collection of articles in honour of the 250th anniversary of his birth presented to the Academy of Sciences of USSR, Moscow, Russia.

Ackeret, J. (1944). Investigation of a water turbine built according to Euler's suggestions. Schweizerische Bauzeitung, 123(1), 2. (In German).

Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., Voronova, V. V., & Balaka, N. N. (2022). The utility model patent of the RF No. 213280 Useful model patent of the Russian Federation No 213280. Jet Installation. Moscow, Russia.

Baturin, O. V. (2011). Lecture notes on the educational discipline “Theory and calculation of blade machines”: a textbook. Samara University, Samara, Russia. (In Russian).

Petrovich, G. P. (2002). Philosophy of technology and creativity of P. K. Engelmeyer: Historical and philosophical analysis. Ph.D. Thesis, Ural State Economic University Press, Yekaterinburg, Russia.

Altshuller, G. S. (2011). To find an idea: An introduction to TRIZ - the theory of inventive problem solving. Alpina Publisher, Moscow, Russia.

Oz, F., & Kara, K. (2020). Jet Oscillation Frequency Characterization of a Sweeping Jet Actuator y. Fluids, 5(2), 72. doi:10.3390/fluids5020072.

Portillo, D. J., Hoffman, E., Garcia, M., LaLonde, E., Combs, C., & Hood, R. L. (2022). The Effects of Compressibility on the Performance and Modal Structures of a Sweeping Jet Emitted from Various Scales of a Fluidic Oscillator. Fluids, 7(7), 251. doi:10.3390/fluids7070251.

Tomac, M. (2020). Effect of the Oscillator Length on the Characteristics of a Feedback Type Fluidic Oscillator. Academic Platform Journal of Engineering and Science, 8(3), 432–438. doi:10.21541/apjes.583500.

Baghaei, M., & Bergada, J. M. (2020). Fluidic oscillators, the effect of some design modifications. Applied Sciences (Switzerland), 10(6), 2105. doi:10.3390/app10062105.

Hossain, M. A., Ameri, A., Gregory, J. W., & Bons, J. P. (2020). Sweeping jet film cooling at high blowing ratio on a turbine vane. Journal of Turbomachinery, 142(12), 121010. doi:10.1115/1.4047396.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-06


  • There are currently no refbacks.

Copyright (c) 2022 Yuri Appolonievich Sazonov, Mikhail Albertovich Mokhov, Inna Vladimirovna Gryaznova, Victoria Vasilievna Voronova, Khoren Arturovich Tumanyan, Mikhail Alexandrovich Frankov, Nikolay Nikolaevich Balaka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.