Development of a Flow-Measuring Hydropneumatic Bench for Testing Pipeline Valves
Downloads
Doi: 10.28991/CEJ-2023-09-01-013
Full Text: PDF
[2] Ma, T., Yang, H., Guo, X., Lou, C., Shen, Z., Chen, J., & Du, J. (2018). Development of inline hydroelectric generation system from municipal water pipelines. Energy, 144(2), 535–548. doi:10.1016/j.energy.2017.11.113.
[3] Halali, M. A., Azari, V., Arabloo, M., Mohammadi, A. H., & Bahadori, A. (2016). Application of a radial basis function neural network to estimate pressure gradient in water-oil pipelines. Journal of the Taiwan Institute of Chemical Engineers, 58(1), 189–202. doi:10.1016/j.jtice.2015.06.042.
[4] Li, S., Karney, B. W., & Liu, G. (2015). FSI research in pipeline systems - A review of the literature. Journal of Fluids and Structures, 57(8), 277–297. doi:10.1016/j.jfluidstructs.2015.06.020.
[5] Vesterlund, M., Toffolo, A., & Dahl, J. (2017). Optimization of multi-source complex district heating network, a case study. Energy, 126, 53–63. doi:10.1016/j.energy.2017.03.018.
[6] Wang, D., Huang, P., Qian, X., Wu, Z., & Jing, Q. (2021). Study on the natural gas diffusion behavior in sewage pipeline by a new outdoor full-scale water cycling experimental pipeline system. Process Safety and Environmental Protection, 146(2), 599–609. doi:10.1016/j.psep.2020.11.049.
[7] Rejowski, R., & Pinto, J. M. (2003). Scheduling of a multiproduct pipeline system. Computers and Chemical Engineering, 27(8–9), 1229–1246. doi:10.1016/S0098-1354(03)00049-8.
[8] Wen, K., Lu, Y., Lu, M., Zhang, W., Zhu, M., Qiao, D., Meng, F., Zhang, J., Gong, J., & Hong, B. (2022). Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation. Energy, 257(10), 124745. doi:10.1016/j.energy.2022.124745.
[9] Ma, Q., Tian, G., Zeng, Y., Li, R., Song, H., Wang, Z., Gao, B., & Zeng, K. (2021). Pipeline in-line inspection method, instrumentation and data management. Sensors, 21(11), 3862. doi:10.3390/s21113862.
[10] Alexandrov, I. A., Muranov, A. N., & Mikhailov, M. S. (2021). The analysis of ways to increase the durability of shut-off valves loaded elements. Journal of Advanced Materials and Technologies, 6(3), 225–235. doi:10.17277/jamt.2021.03.pp.225-235.
[11] Stewart, M. (2015). Surface Production Operations: Volume III: Facility Piping and Pipeline Systems. Gulf Professional publishing, Houston, United States. doi:10.1016/B978-1-85617-808-2.00001-8.
[12] Vereschaka, A., Milovich, F., Andreev, N., Sitnikov, N., Alexandrov, I., Muranov, A., Mikhailov, M., & Tatarkanov, A. (2021). Efficiency of application of (Mo, al)n-based coatings with inclusion of Ti, Zr or Cr during the turning of steel of nickel-based alloy. Coatings, 11(11), 1271. doi:10.3390/coatings11111271.
[13] Vereschaka, A., Milovich, F., Andreev, N., Sotova, C., Alexandrov, I., Muranov, A., Mikhailov, M., & Tatarkanov, A. (2022). Investigation of the structure and phase composition of the microdroplets formed during the deposition of PVD coatings. Surface and Coatings Technology, 441. doi:10.1016/j.surfcoat.2022.128574.
[14] Vetter, C. P., Kuebel, L. A., Natarajan, D., & Mentzer, R. A. (2019). Review of failure trends in the US natural gas pipeline industry: An in-depth analysis of transmission and distribution system incidents. Journal of Loss Prevention in the Process Industries, 60(7), 317–333. doi:10.1016/j.jlp.2019.04.014.
[15] Kurbangaleeva, M. K. (2022). Improvement of Emergency Oil Spill Management Technology. IOP Conference Series: Earth and Environmental Science, 988(2), 22008. doi:10.1088/1755-1315/988/2/022008.
[16] Zagretdinov, A. R., Kazakov, R. B., & Mukatdarov, A. A. (2019). Control the tightness of the pipeline valve shutter according to the change in the Hurst exponent of vibroacoustic signals. E3S Web of Conferences, 124, 03005. doi:10.1051/e3sconf/201912403005.
[17] Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-Environment Research, 2(4), 212–227. doi:10.1016/j.jher.2009.02.003.
[18] Eremin, E. N., & Losev, A. S. (2015). Wear resistance increase of pipeline valves by overlaying welding flux-cored wire. Procedia Engineering, 113, 435–440. doi:10.1016/j.proeng.2015.07.324.
[19] Du, H., Xiong, W., Li, Q., & Wang, L. (2018). Energy efficiency control of pneumatic actuator systems through nonlinear dynamic optimization. Journal of Cleaner Production, 184, 511-519. doi:10.1016/j.jclepro.2018.02.117.
[20] Menon, E. S. (2011). Pipeline Planning and Construction Field Manual. Gulf Professional publishing, Houston, United States. doi:10.1016/C2009-0-63837-X.
[21] Kishawy, H. A., & Gabbar, H. A. (2010). Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87(7), 373–380. doi:10.1016/j.ijpvp.2010.04.003.
[22] Daniyan, I. A., Dahunsi, O. A., Oguntuase, O. B., Daniyan, O. L., & Mpofu, K. (2019). Development of a prototype test rig for leak detection in pipelines. Procedia CIRP, 80, 524-529. doi:10.1016/j.procir.2019.01.016.
[23] Abdulshaheed, A., Mustapha, F., & Ghavamian, A. (2017). A pressure-based method for monitoring leaks in a pipe distribution system: A Review. Renewable and Sustainable Energy Reviews, 69(1), 902–911. doi:10.1016/j.rser.2016.08.024.
[24] Degtiarev, A. A. (2020). Patent No. RU2718549C1. Hydropneumatic two-pump station for hydraulic testing and pressure testing of blowout prevention equipment. Available online: https://elibrary.ru/item.asp?id=42712343 (accessed on May 2022).
[25] Yanfei, R. X. K. (2018). A kind of hydraulic pressure and pressure test device of pressure vessel conduit. Patent No. CN108931437A, Moscow, Russia.
[26] Shang, Z., & Shen, Z. (2022). Single-pass inline pipeline 3D reconstruction using depth camera array. Automation in Construction, 138. doi:10.1016/j.autcon.2022.104231.
[27] Baumrucker, B. T., & Biegler, L. T. (2010). MPEC strategies for cost optimization of pipeline operations. Computers and Chemical Engineering, 34(6), 900–913. doi:10.1016/j.compchemeng.2009.07.012.
[28] Salihu, C., Hussein, M., Mohandes, S. R., & Zayed, T. (2022). Towards a comprehensive review of the deterioration factors and modeling for sewer pipelines: A hybrid of bibliometric, scientometric, and meta-analysis approach. Journal of Cleaner Production, 131460. doi:10.1016/j.jclepro.2022.131460.
[29] Alexandrov, I. A., Muranov, A. N., & Mikhailov, M. S. (2021). Development of an Algorithm for Automated Evaluation of the Operability of Structural Elements of Shut-off Valves. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies. doi:10.1109/itqmis53292.2021.9642718.
[30] Alexandrov, I., Muranov, A., & Mikhailov, M. Development of an algorithm for automated assessment of tightness of contact sealing joints of stop valves. Bulletin of Bryansk State Technical University, 10(107), 27–37.
[31] Zheng, M., Li, H., He, B., Ren, H., & Zhang, Y. (2020). Vibration characteristics of valve pipeline system for high viscosity fluid. Zhendong Yu Chongji/Journal of Vibration and Shock, 39(19), 243–249. doi:10.13465/j.cnki.jvs.2020.19.035.
[32] Tatarkanov, A. A., Alexandrov, I. A., Mikhailov, M. S., & Muranov, A. N. (2021). Algorithmic Approach to the Assessment Automation of the Pipeline Shut-Off Valves Tightness. International Journal of Engineering Trends and Technology, 69(12), 147–162. doi:10.14445/22315381/IJETT-V69I12P218.
[33] Arti, B., Weyer, R., Dang, T., & Taagepera, J. (2018). Pneumatic Testing of Piping: Managing the Hazards for High Energy Tests. Volume 3A: Design and Analysis. doi:10.1115/pvp2018-84078
[34] Schwengler, P., Schmücker, A., & Kern, T. (2009). Integrity of gas facilities: Practical experience in using the new tool GasCam® for tightness checks. GWF, Gas - ERDGAS, 150(13), 60–63.
[35] Vladimir, M., Shanaurin, A., Fedulov, M., Vasiliev, S. (2007). Test Installation, Patent No. RU62239U1, Moscow, Russia.
[36] Xiong, G. Z., & Shuangliang, L. B. (2014). Leak detection device for valve, Patent No. CN103940559A, Beijing, China.
[37] Jianbin, Z., Xiaofang, Y., Tongchen, W., Haiqiang, Z., Jianjun, W., Weizu, X., & Xiaolong, L. (2018). A kind of swing check valve leak detection tool, Patent No. CN208254744U, Moscow, Russia.
[38] Thomas, G. S. (2020). Leak test system and method for thermoplastic piping, Patent No. US20200256757A1, U.S. Patent and Trademark Office, Washington, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.