Development of a Flow-Measuring Hydropneumatic Bench for Testing Pipeline Valves

Mukhamed K. Nogmov, Ibragim M. Lianov, Viktor R. Lysenko, Natalia V. Dmitrichenko


Pipe fittings are an important element of any pipeline network, ensuring stable and safe operation by regulating the flow of the working medium. To control the performance of pipeline valves, it is necessary to conduct various tests, the main ones of which are hydraulic and pneumatic. It is important to expand testing capabilities and reduce time costs. The purpose of this work is to combine hydraulic and pneumatic tests into one test complex, which will reduce the time of the test complex due to the absence of the need for reinstallation and reconfiguration. The subject of the study is the determination of the design, technical, and operational characteristics of such a stand, as well as the simulation of operating conditions to confirm its operability. During the development, methods of solid and surface modeling, the finite element method, and analytical calculation methods were used. The results of the stand design are presented, and the features of the process of its development are described, including the analysis of the stress-strain state and the analysis of reliability and durability indicators. The obtained values of the distribution of equivalent stresses, deformations, and displacements of the structure elements do not exceed the maximum allowable values and do not lead to destruction. The analysis shows that the developed stand has improved capabilities compared to those previously used.


Doi: 10.28991/CEJ-2023-09-01-013

Full Text: PDF


Pipeline Valves; Pipeline System; Hydraulic Testing; Pneumatic Testing; Flow-Measuring Hydropneumatic Bench.


Sotoodeh. (2021). A Practical Guide to Piping and Valves for the Oil and Gas Industry. Gulf Professional publishing, Houston, United States. doi:10.1016/c2020-0-00637-7.

Ma, T., Yang, H., Guo, X., Lou, C., Shen, Z., Chen, J., & Du, J. (2018). Development of inline hydroelectric generation system from municipal water pipelines. Energy, 144(2), 535–548. doi:10.1016/

Halali, M. A., Azari, V., Arabloo, M., Mohammadi, A. H., & Bahadori, A. (2016). Application of a radial basis function neural network to estimate pressure gradient in water-oil pipelines. Journal of the Taiwan Institute of Chemical Engineers, 58(1), 189–202. doi:10.1016/j.jtice.2015.06.042.

Li, S., Karney, B. W., & Liu, G. (2015). FSI research in pipeline systems - A review of the literature. Journal of Fluids and Structures, 57(8), 277–297. doi:10.1016/j.jfluidstructs.2015.06.020.

Vesterlund, M., Toffolo, A., & Dahl, J. (2017). Optimization of multi-source complex district heating network, a case study. Energy, 126, 53–63. doi:10.1016/

Wang, D., Huang, P., Qian, X., Wu, Z., & Jing, Q. (2021). Study on the natural gas diffusion behavior in sewage pipeline by a new outdoor full-scale water cycling experimental pipeline system. Process Safety and Environmental Protection, 146(2), 599–609. doi:10.1016/j.psep.2020.11.049.

Rejowski, R., & Pinto, J. M. (2003). Scheduling of a multiproduct pipeline system. Computers and Chemical Engineering, 27(8–9), 1229–1246. doi:10.1016/S0098-1354(03)00049-8.

Wen, K., Lu, Y., Lu, M., Zhang, W., Zhu, M., Qiao, D., Meng, F., Zhang, J., Gong, J., & Hong, B. (2022). Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation. Energy, 257(10), 124745. doi:10.1016/

Ma, Q., Tian, G., Zeng, Y., Li, R., Song, H., Wang, Z., Gao, B., & Zeng, K. (2021). Pipeline in-line inspection method, instrumentation and data management. Sensors, 21(11), 3862. doi:10.3390/s21113862.

Alexandrov, I. A., Muranov, A. N., & Mikhailov, M. S. (2021). The analysis of ways to increase the durability of shut-off valves loaded elements. Journal of Advanced Materials and Technologies, 6(3), 225–235. doi:10.17277/jamt.2021.03.pp.225-235.

Stewart, M. (2015). Surface Production Operations: Volume III: Facility Piping and Pipeline Systems. Gulf Professional publishing, Houston, United States. doi:10.1016/B978-1-85617-808-2.00001-8.

Vereschaka, A., Milovich, F., Andreev, N., Sitnikov, N., Alexandrov, I., Muranov, A., Mikhailov, M., & Tatarkanov, A. (2021). Efficiency of application of (Mo, al)n-based coatings with inclusion of Ti, Zr or Cr during the turning of steel of nickel-based alloy. Coatings, 11(11), 1271. doi:10.3390/coatings11111271.

Vereschaka, A., Milovich, F., Andreev, N., Sotova, C., Alexandrov, I., Muranov, A., Mikhailov, M., & Tatarkanov, A. (2022). Investigation of the structure and phase composition of the microdroplets formed during the deposition of PVD coatings. Surface and Coatings Technology, 441. doi:10.1016/j.surfcoat.2022.128574.

Vetter, C. P., Kuebel, L. A., Natarajan, D., & Mentzer, R. A. (2019). Review of failure trends in the US natural gas pipeline industry: An in-depth analysis of transmission and distribution system incidents. Journal of Loss Prevention in the Process Industries, 60(7), 317–333. doi:10.1016/j.jlp.2019.04.014.

Kurbangaleeva, M. K. (2022). Improvement of Emergency Oil Spill Management Technology. IOP Conference Series: Earth and Environmental Science, 988(2), 22008. doi:10.1088/1755-1315/988/2/022008.

Zagretdinov, A. R., Kazakov, R. B., & Mukatdarov, A. A. (2019). Control the tightness of the pipeline valve shutter according to the change in the Hurst exponent of vibroacoustic signals. E3S Web of Conferences, 124, 03005. doi:10.1051/e3sconf/201912403005.

Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-Environment Research, 2(4), 212–227. doi:10.1016/j.jher.2009.02.003.

Eremin, E. N., & Losev, A. S. (2015). Wear resistance increase of pipeline valves by overlaying welding flux-cored wire. Procedia Engineering, 113, 435–440. doi:10.1016/j.proeng.2015.07.324.

Du, H., Xiong, W., Li, Q., & Wang, L. (2018). Energy efficiency control of pneumatic actuator systems through nonlinear dynamic optimization. Journal of Cleaner Production, 184, 511-519. doi:10.1016/j.jclepro.2018.02.117.

Menon, E. S. (2011). Pipeline Planning and Construction Field Manual. Gulf Professional publishing, Houston, United States. doi:10.1016/C2009-0-63837-X.

Kishawy, H. A., & Gabbar, H. A. (2010). Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87(7), 373–380. doi:10.1016/j.ijpvp.2010.04.003.

Daniyan, I. A., Dahunsi, O. A., Oguntuase, O. B., Daniyan, O. L., & Mpofu, K. (2019). Development of a prototype test rig for leak detection in pipelines. Procedia CIRP, 80, 524-529. doi:10.1016/j.procir.2019.01.016.

Abdulshaheed, A., Mustapha, F., & Ghavamian, A. (2017). A pressure-based method for monitoring leaks in a pipe distribution system: A Review. Renewable and Sustainable Energy Reviews, 69(1), 902–911. doi:10.1016/j.rser.2016.08.024.

Degtiarev, A. A. (2020). Patent No. RU2718549C1. Hydropneumatic two-pump station for hydraulic testing and pressure testing of blowout prevention equipment. Available online: (accessed on May 2022).

Yanfei, R. X. K. (2018). A kind of hydraulic pressure and pressure test device of pressure vessel conduit. Patent No. CN108931437A, Moscow, Russia.

Shang, Z., & Shen, Z. (2022). Single-pass inline pipeline 3D reconstruction using depth camera array. Automation in Construction, 138. doi:10.1016/j.autcon.2022.104231.

Baumrucker, B. T., & Biegler, L. T. (2010). MPEC strategies for cost optimization of pipeline operations. Computers and Chemical Engineering, 34(6), 900–913. doi:10.1016/j.compchemeng.2009.07.012.

Salihu, C., Hussein, M., Mohandes, S. R., & Zayed, T. (2022). Towards a comprehensive review of the deterioration factors and modeling for sewer pipelines: A hybrid of bibliometric, scientometric, and meta-analysis approach. Journal of Cleaner Production, 131460. doi:10.1016/j.jclepro.2022.131460.

Alexandrov, I. A., Muranov, A. N., & Mikhailov, M. S. (2021). Development of an Algorithm for Automated Evaluation of the Operability of Structural Elements of Shut-off Valves. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies. doi:10.1109/itqmis53292.2021.9642718.

Alexandrov, I., Muranov, A., & Mikhailov, M. Development of an algorithm for automated assessment of tightness of contact sealing joints of stop valves. Bulletin of Bryansk State Technical University, 10(107), 27–37.

Zheng, M., Li, H., He, B., Ren, H., & Zhang, Y. (2020). Vibration characteristics of valve pipeline system for high viscosity fluid. Zhendong Yu Chongji/Journal of Vibration and Shock, 39(19), 243–249. doi:10.13465/j.cnki.jvs.2020.19.035.

Tatarkanov, A. A., Alexandrov, I. A., Mikhailov, M. S., & Muranov, A. N. (2021). Algorithmic Approach to the Assessment Automation of the Pipeline Shut-Off Valves Tightness. International Journal of Engineering Trends and Technology, 69(12), 147–162. doi:10.14445/22315381/IJETT-V69I12P218.

Arti, B., Weyer, R., Dang, T., & Taagepera, J. (2018). Pneumatic Testing of Piping: Managing the Hazards for High Energy Tests. Volume 3A: Design and Analysis. doi:10.1115/pvp2018-84078

Schwengler, P., Schmücker, A., & Kern, T. (2009). Integrity of gas facilities: Practical experience in using the new tool GasCam® for tightness checks. GWF, Gas - ERDGAS, 150(13), 60–63.

Vladimir, M., Shanaurin, A., Fedulov, M., Vasiliev, S. (2007). Test Installation, Patent No. RU62239U1, Moscow, Russia.

Xiong, G. Z., & Shuangliang, L. B. (2014). Leak detection device for valve, Patent No. CN103940559A, Beijing, China.

Jianbin, Z., Xiaofang, Y., Tongchen, W., Haiqiang, Z., Jianjun, W., Weizu, X., & Xiaolong, L. (2018). A kind of swing check valve leak detection tool, Patent No. CN208254744U, Moscow, Russia.

Thomas, G. S. (2020). Leak test system and method for thermoplastic piping, Patent No. US20200256757A1, U.S. Patent and Trademark Office, Washington, United States.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-013


  • There are currently no refbacks.

Copyright (c) 2023 Mukhamed Khasanbievich Nogmov, Ibragim Maratovich Lianov, Viktor Romanovich Lysenko, Natalia Viktorovna Dmitrichenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.