Multi-Cycle Production Development Planning for Sustainable Power Systems to Maximize the Use of Renewable Energy Sources

Wahab Musa, Vadim Ponkratov, Alan Karaev, Nikolay Kuznetsov, Larisa Vatutina, Maria Volkova, Olga Shalina, Andrey Masterov


This research focuses on the multi-cycle production development planning for sustainable power systems to maximize the usage of renewable energy sources. The intention of this study is to offer a comprehensive review of the research on the potential of multi-cycle production development planning for the development of sustainable power systems. In pursuit of this objective, the study has incorporated a qualitative research approach to analyze the volume of data available on the research topic to delineate how multi-cycle production development planning can be used for sustainable power systems and the maximization of the use of renewable energy sources. The study also highlights the major models that can be incorporated into the multi-cycle production development planning for sustainable power systems to maximize the use of renewable energy sources. The existing literature was extracted from databases, namely, Google Scholar, EBSCOHost, and Springer. The data comprised peer-reviewed journal articles, books, and credible online sources. Lastly, the practical and theoretical relevance of the study, along with limitations and recommendations for future practitioners, is provided in the conclusion.


Doi: 10.28991/CEJ-2022-08-11-018

Full Text: PDF


Multi-Cycle Production; Renewable Energy; Generation Evolution Planning; Sustainable Power; Energy Sources.


Seckin Salvarli, M., & Salvarli, H. (2020). For Sustainable Development: Future Trends in Renewable Energy and Enabling Technologies. Renewable Energy - Resources, Challenges and Applications. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.91842.

Chel, A., & Kaushik, G. (2018). Renewable energy technologies for sustainable development of energy efficient building. Alexandria Engineering Journal, 57(2), 655–669. doi:10.1016/j.aej.2017.02.027.

Li, Q., Wang, J., Zhang, Y., Fan, Y., Bao, G., & Wang, X. (2020). Multi-period generation expansion planning for sustainable power systems to maximize the utilization of renewable energy sources. Sustainability (Switzerland), 12(3), 1083. doi:10.3390/su12031083.

Lu, Y., Khan, Z. A., Alvarez-Alvarado, M. S., Zhang, Y., Huang, Z., & Imran, M. (2020). A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability (Switzerland), 12(12), 5078. doi:10.3390/su12125078.

Anvari-Moghaddam, A., Mohammadi-ivatloo, B., Asadi, S., Guldstrand Larsen, K., & Shahidehpour, M. (2019). Sustainable Energy Systems Planning, Integration, and Management. Applied Sciences, 9(20), 4451. doi:10.3390/app9204451.

Ndayishimiye, V., Zhang, X., Nibagwire, D., Simiyu, P., Dushimimana, G., & Bikorimana, S. (2019). Environmental benefits of modern power system and clean energy. E3S Web of Conferences, 107, 2006. doi:10.1051/e3sconf/201910702006.

Fan, D., Dou, X., Xu, Y., Wu, C., Xue, G., & Shao, Y. (2021). A Dynamic Multi-Stage Planning Method for Integrated Energy Systems considering Development Stages. Frontiers in Energy Research, 9, 723702. doi:10.3389/fenrg.2021.723702.

Unsihuay-Vila, C., Marangon-Lima, J. W., Zambroni De Souza, A. C., & Perez-Arriaga, I. J. (2011). Multistage expansion planning of generation and interconnections with sustainable energy development criteria: A multiobjective model. International Journal of Electrical Power and Energy Systems, 33(2), 258–270. doi:10.1016/j.ijepes.2010.08.021.

Abdullah, L., Chan, W., & Afshari, A. (2019). Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions. Journal of Industrial Engineering International, 15(2), 271–285. doi:10.1007/s40092-018-0289-z.

Rigo, P. D., Rediske, G., Rosa, C. B., Gastaldo, N. G., Michels, L., Júnior, A. L. N., & Siluk, J. C. M. (2020). Renewable energy problems: Exploring the methods to support the decision-making process. Sustainability (Switzerland), 12(23), 1–27. doi:10.3390/su122310195.

Rigo, P. D., Rediske, G., Rosa, C. B., Gastaldo, N. G., Michels, L., Neuenfeldt Júnior, A. L., & Siluk, J. C. M. (2020). Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process. Sustainability, 12(23), 10195. doi:10.3390/su122310195.

Dudovskiy, J. (2016). The ultimate guide to writing a dissertation in business studies: A step-by-step assistance. Goodreads, Pittsburgh, Pennsylvania, United States.

Goldkuhl, G. (2012). Pragmatism vs interpretivism in qualitative information systems research. European Journal of Information Systems, 21(2), 135–146. doi:10.1057/ejis.2011.54.

Maxwell, J.A. (2012). Qualitative research design: An interactive approach. Sage Publications, Thousand Oaks, California, United States.

Saunders, M., Lewis, P., & Thornhill, A. (2009). Research methods for business students. Pearson Education, London, United Kingdom.

Danermark, B. (2002). Interdisciplinary Research and Critical Realism the Example of Disability Research. Alethia, 5(1), 56–64. doi:10.1558/aleth.v5i1.56.

Debout, C. (2016). Qualitative case study. Soins, 61(806), 57–60. doi:10.1016/j.soin.2016.04.018.

Rashid, Y., Rashid, A., Warraich, M. A., Sabir, S. S., & Waseem, A. (2019). Case Study Method: A Step-by-Step Guide for Business Researchers. International Journal of Qualitative Methods, 18. doi:10.1177/1609406919862424.

Daas, P., & Arends-Tóth, J. (2012). Secondary data collection. Statistics Netherlands. The Hague, Bassendean, Australia.

Cheng, H. G., & Phillips, M. R. (2014). Secondary analysis of existing data: opportunities and implementation. Shanghai Archives of Psychiatry, 26(6), 371–375. doi:10.11919/j.issn.1002-0829.214171.

Hox, J.J., & Boeije, H.R. (2005). Data collection, primary versus secondary. In: Kempf-Leonard, K. (eds.) Encyclopedia of Social Measurement, 593–599, Elsevier, Amsterdam, Netherlands.

Braun, V., & Clarke, V. (2012). Thematic analysis. APA handbook of research methods in psychology, Vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological, 57–71, American Psychological Association, Washington, United States. doi:10.1037/13620-004.

Tripathy, J. P. (2013). Secondary data analysis: Ethical issues and challenges. Iranian Journal of Public Health, 42(12), 1478–1479.

Biel, K., & Glock, C. H. (2016). Systematic literature review of decision support models for energy-efficient production planning. Computers and Industrial Engineering, 101, 243–259. doi:10.1016/j.cie.2016.08.021.

Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744–757. doi:10.1016/j.ejor.2015.07.017.

Gao, K., Huang, Y., Sadollah, A., & Wang, L. (2020). A review of energy-efficient scheduling in intelligent production systems. Complex & Intelligent Systems, 6(2), 237–249. doi:10.1007/s40747-019-00122-6.

Zhou, S., Jin, M., & Du, N. (2020). Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times. Energy, 209, 118420. doi:10.1016/

Sadeghi, H., Rashidinejad, M., & Abdollahi, A. (2017). A comprehensive sequential review study through the generation expansion planning. Renewable and Sustainable Energy Reviews, 67, 1369–1394. doi:10.1016/j.rser.2016.09.046.

Koltsaklis, N. E., & Dagoumas, A. S. (2018). State-of-the-art generation expansion planning: A review. Applied Energy, 230, 563–589. doi:10.1016/j.apenergy.2018.08.087.

Conejo, A.J., Baringo, L., Kazempour, S.J., & Siddiqui, A.S. (2016). Investment in electricity generation and transmission. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-29501-5.

Alizadeh, B., & Jadid, S. (2015). A dynamic model for coordination of generation and transmission expansion planning in power systems. International Journal of Electrical Power & Energy Systems, 65, 408–418. doi:10.1016/j.ijepes.2014.10.007.

Munoz, F. D., & Watson, J. P. (2015). A scalable solution framework for stochastic transmission and generation planning problems. Computational Management Science, 12(4), 491–518. doi:10.1007/s10287-015-0229-y.

He, Y., Wan, L., Zhang, M., & Zhao, H. (2022). Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China. Sustainability (Switzerland), 14(17), 10498. doi:10.3390/su141710498.

Teng, F., Zhang, Q., Wang, G., Liu, J., & Li, H. (2021). A comprehensive review of energy blockchain: Application scenarios and development trends. International Journal of Energy Research, 45(12), 17515–17531. doi:10.1002/er.7109.

Wei, Y., Ye, Q., Ding, Y., Ai, B., Tan, Q., & Song, W. (2021). Optimization model of a thermal-solar-wind power planning considering economic and social benefits. Energy, 222, 119752. doi:10.1016/

Claus, T., Herrmann, F., & Manitz, M. (2015). Production planning and control: research approaches, methods and their applications. Springer, Berlin, Germany. doi:10.1007/978-3-662-43542-7. (In German).

Trost, M., Claus, T., Teich, E., Selmair, M., & Herrmann, F. (2016). Social and Ecological Capabilities for a Sustainable Hierarchical Production Planning. ECMS 2016 Proceedings Edited by Thorsten Claus, Frank Herrmann, Michael Manitz, Oliver Rose. doi:10.7148/2016-0432.

Dai, C., Tang, M., Liu, Y., He, J., Yang, Z., & Yang, Y. (2020). Designing Smart Energy Network Ecosystem for Integrated energy services in urban areas. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). doi:10.1109/case48305.2020.9216903.

He, X., & Zheng, L. (2019). Analysis of Multi-energy Complementary Integration Optimization Technology. E3S Web of Conferences, 118, 1057. doi:10.1051/e3sconf/201911801057.

Wang, S., Feng, L., Zhang, P., & Wu, L. (2014). The Hybrid of Multiple Energy Promotes New Energy Development. Northwest Hydropower, 6, 78-82.

Hou, R., Li, S., Chen, H., Ren, G., Gao, W., & Liu, L. (2021). Coupling mechanism and development prospect of innovative ecosystem of clean energy in smart agriculture based on blockchain. Journal of Cleaner Production, 319, 128466. doi:10.1016/j.jclepro.2021.128466.

Yan, R., Chen, Y., & Zhu, X. (2022). Optimization of Operating Hydrogen Storage System for Coal–Wind–Solar Power Generation. Energies, 15(14), 501. doi:10.3390/en15145015.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-018


  • There are currently no refbacks.

Copyright (c) 2022 Wahab Musa, Vadim Ponkratov, Alan Karaev, Nikolay Kuznetsov, Larisa Vatutina, Maria Volkova, Olga Shalina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.