A Review of Advances in Peat Soil Stabilisation Technology: Exploring the Potential of Palm Oil Fuel Ash Geopolymer as a Soil Stabiliser Material

Adriana Erica Amaludin, Hidayati Asrah, Habib M. Mohamad


This study aims to highlight the latest developments in the field of peat soil stabilisation technology via chemical stabilisation. The review examines the use of traditional stabilisers such as OPC and various non-traditional stabiliser materials, i.e., Palm Oil Fuel Ash (POFA)-OPC blends, chemical solutions, and geopolymer materials, to enhance the Unconfined Compressive Strength (UCS) characteristics of peat soils based on the ASTM D 4609 requirements. OPC, POFA-OPC blends, and alkaline solutions mostly produced stabilised soil samples that fell short of the ASTM requirements. Existing studies on the use of waste-derived geopolymers to treat peat soils are limited, while the use of POFA geopolymer materials has mostly focused on the improvement of clayey and silty soils. The results of soil stabilisation with geopolymer were very encouraging, as the strength gains were in line with the ASTM soil strength requirements. As a result of this review, it can be concluded that POFA geopolymer is a viable soil stabiliser material with the addition of Ground Granulated Blast Furnace Slag, and that the use of POFA-GGBFS geopolymer to enhance the strength properties of peat soils should be investigated.


Doi: 10.28991/CEJ-2023-09-08-017

Full Text: PDF


Peat Soil; Ordinary Portland Cement; Palm Oil Fuel Ash; Geopolymer; Soil Stabilisation; Unconfined Compressive Strength.


Kolay, P. K., & Taib, S. N. L. (2018). Physical and Geotechnical Properties of Tropical Peat and Its Stabilization. Peat, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.74173.

Zainorabidin, A., & Mohamad, H. M. (2016). Preliminary peat surveys in ecoregion delineation of North Borneo: Engineering perspective. Electronic Journal of Geotechnical Engineering, 21(12), 4485–4493.

ASTM D4427-18. (2023). Standard Classification of Peat Samples by Laboratory Testing. ASTM International, Pennsylvania, United States. doi:10.1520/D4427-18.

Huat, B. B. K., Prasad, A., Asadi, A., & Kazemian, S. (2014). Geotechnics of organic soils and peat. CRC Press, London, United Kingdom. doi:10.1201/b15627.

Rikmann, E., Zekker, I., Teppand, T., Pallav, V., Shanskiy, M., Mäeorg, U., Tenno, T., Burlakovs, J., & Liiv, J. (2021). Relationship between phase composition and mechanical properties of peat soils stabilized using oil shale ash and pozzolanic additive. Water (Switzerland), 13(7), 942. doi:10.3390/w13070942.

Sing, W. L., Hashim, R., & Ali, F. (2008). Engineering behaviour of stabilized peat soil. European Journal of Scientific Research, 21(4), 581-591.

von Post, L. (1922). Sweden's Geological Survey's peat inventory and some of its results so far. Svenska Mosskulturföreningens Tidskrift, Jönköping, Sweden. (In Swedish).

Hanzawa, H., Kishida, T., Fukasawa, T., & Asada, H. (1994). Case study of the application of direct shear and cone penetration tests to soil investigation, design and quality control for peaty soils. Soils and Foundations, 34(4), 13–22. doi:10.3208/sandf1972.34.4_13.

Huat, B. K. (2004). Organic and peat soils engineering. Penerbit Universiti Putra Malaysia, Serdang, Malaysia.

ASTM D4609-08. (2017). Standard Guide for Evaluating Effectiveness of Admixtures for Soil Stabilization. ASTM International, Pennsylvania, United States.

Nicholson, P. G. (2014). Soil Improvement and Ground Modification Methods. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/C2012-0-02804-9.

Huat, B. B. K., Prasad, A., Kazemian, S., & Anggraini, V. (2019). Ground Improvement Techniques. CRC Press, London, United Kingdom. doi:10.1201/9780429507656.

Omer, M. A. B., & Noguchi, T. (2020). A conceptual framework for understanding the contribution of building materials in the achievement of Sustainable Development Goals (SDGs). Sustainable Cities and Society, 52, 101869. doi:10.1016/j.scs.2019.101869.

Ahmat, A. M., Alengaram, U. J., Shamsudin, M. F., Alnahhal, A. M., Ibrahim, M. S. I., Ibrahim, S., & Rashid, R. S. M. (2023). Assessment of sustainable eco-processed pozzolan (EPP) from palm oil industry as a fly ash replacement in geopolymer concrete. Construction and Building Materials, 387, 131424. doi:10.1016/j.conbuildmat.2023.131424.

Lima, F. S., Gomes, T. C. F., & Moraes, J. C. B. (2023). Effect of coffee husk ash as alkaline activator in one-part alkali-activated binder. Construction and Building Materials, 362, 129799. doi:10.1016/j.conbuildmat.2022.129799.

Asrah, H., Sabana, N., Mirasa, A.K., Bolong, N., Han, L.C. (2020). The Feasibility of Using Palm Oil Ash in the Mix Design of Interlocking Compressed Brick. Green Engineering for Campus Sustainability. Springer, Singapore. doi:10.1007/978-981-13-7260-5_5.

Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65–72. doi:10.1016/j.conbuildmat.2014.10.026.

Leete, R. (2006). Malaysia’s peat swamp forest conservation and sustainable use. United Nations Development Programme Malaysia, Ministry of Natural Resources and Environment, Putrajaya, Malaysia.

Zainorabidin, A., Musa, H., & Mohamad, B. (2017). Engineering Properties of Integrated Tropical Peat Soil in Malaysia. Journal of Geotechnical Engineering, 22(2), 457–466.

Sapar, N. I. F., Matlan, S. J., Mohamad, H. M., Alias, R., & Ibrahim, A. (2020). A Study on Physical and Morphological Characteristics of. International Journal of Advanced Research, in Engineering and Technology, 11(11), 542–553. doi:10.34218/IJARET.11.11.2020.051.

Sapar, N. I. F., Matlan, S. J., Alias, R., & Ibrahim, A. (2022). Identification of Peat Profile, Physicochemical Properties and Microstructures on Different Peat Soil Vegetation Types. Asian Journal of Fundamental and Applied Sciences, 3, 22–33. doi:10.55057/ajfas.2022.3.1.3.

Mohamad, H. M., Zainorabidin, A., Musta, B., Mustafa, M. N., Amaludin, A. E., & Abdurahman, M. N. (2021). Compressibility behaviour and engineering properties of north Borneo peat soil. Eurasian Journal of Soil Science, 10(3), 259–268. doi:10.18393/ejss.930620.

Mohamad, H. M., Kasbi, B., Baba, M., Adnan, Z., Hardianshah, S., & Ismail, S. (2021). Investigating Peat Soil Stratigraphy and Marine Clay Formation Using the Geophysical Method in Padas Valley, Northern Borneo. Applied and Environmental Soil Science, 2021, 1–12. doi:10.1155/2021/6681704.

Mohamad, H. M., & Zainorabidin, A. (2021). Young’S Modulus of Peat Soil under Cyclic Loading. International Journal of GEOMATE, 21(84), 177–187. doi:10.21660/2021.84.j2164.

Mohamad, H. M., & Adnan, Z. (2017). A Constitutional Review of the Post Cyclic Shear Strength Behavior of Peat Soil. Electronic Journal of Geotechnical Engineering, 22(11), 4237-4254.

Mohamad, H. M., & Zainorabidin, A. (2022). Post-cyclic Loading Relationship Effects to the Shear Stress and Cyclic Shear Strain of Peat Soil. Civil Engineering Journal (Iran), 8(12), 2779–2788. doi:10.28991/CEJ-2022-08-12-08.

Wong, L. S., Hashim, R., & Ali, F. (2011). Unconfined compressive strength characteristics of stabilized peat. Scientific Research and Essays, 6(9), 1915–1921. doi:10.5897/SRE10.060.

Kolay, P. K., Sii, H. Y., & Taib, S. N. L. (2011). Tropical peat soil stabilization using class F pond ash from coal fired power plant. World Academy of Science, Engineering and Technology, 74, 15–19. doi:10.5281/zenodo.1075801.

Dehghanbanadaki, A., Arefnia, A., Keshtkarbanaeemoghadam, A., Ahmad, K., Motamedi, S., & Hashim, R. (2017). Evaluating the compression index of fibrous peat treated with different binders. Bulletin of Engineering Geology and the Environment, 76(2), 575–586. doi:10.1007/s10064-016-0890-6.

Wahab, N., Talib, M. K. B. A., Xin, C. J., Basri, K., Leh, F. L. N., & Rashid, A. S. A. (2021). Performance of palm oil fuel ash (POFA) in peat soil stabilization. Malaysian Construction Research Journal, 13(SUPPL.2), 197–211.

Ahmad, A., Sutanto, M. H., Ahmad, N. R. B., Bujang, M., & Mohamad, M. E. (2021). The implementation of industrial byproduct in Malaysian peat improvement: A sustainable soil stabilization approach. Materials, 14(23), 1–22. doi:10.3390/ma14237315.

Rahman, M. E., Leblouba, M., & Pakrashi, V. (2014). Improvement of engineering properties of peat with palm oil clinker. Pertanika Journal of Science and Technology, 22(2), 627–636.

Ahmad, J., Abdul Rahman, A. S., Mohd Ali, M. R., & Abd. Rahman, K. F. (2011). Peat soil treatment using POFA. 2011 IEEE Colloquium on Humanities, Science and Engineering. doi:10.1109/chuser.2011.6163816.

Latifi, N., Rashid, A. S. A., Marto, A., & Tahir, M. M. (2016). Effect of magnesium chloride solution on the physico-chemical characteristics of tropical peat. Environmental Earth Sciences, 75(3). doi:10.1007/s12665-015-4788-6.

Hassan, W. H. W., Rashid, A. S. A., Latifi, N., Horpibulsuk, S., & Borhamdin, S. (2017). Strength and morphological characteristics of organic soil stabilized with magnesium chloride. Quarterly Journal of Engineering Geology and Hydrogeology, 50(4), 454–459. doi:10.1144/qjegh2016-124.

Latifi, N., Siddiqua, S., & Marto, A. (2019). Stabilization of tropical peat using liquid polymer. Environmental Science and Engineering, 2, 826–833. doi:10.1007/978-981-13-2221-1_94.

Razali, S. N. M., Zainorabidin, A., Bakar, I., & Mohamad, H. M. (2018). Strength changes in peat-polymer stabilization process. International Journal of Integrated Engineering, 10(9), 136–141. doi:10.30880/ijie.2018.10.09.007.

Khanday, S. A., Hussain, M., & Das, A. K. (2021). Stabilization of Indian peat using alkali-activated ground granulated blast furnace slag. Bulletin of Engineering Geology and the Environment, 80(7), 5539–5551. doi:10.1007/s10064-021-02248-9.

Khanday, S. A., Hussain, M., & Das, A. K. (2021). Rice Husk Ash–Based Geopolymer Stabilization of Indian Peat: Experimental Investigation. Journal of Materials in Civil Engineering, 33(12), 4021347. doi:10.1061/(asce)mt.1943-5533.0003982.

Paul, A., & Hussain, M. (2020). Cement Stabilization of Indian Peat: An Experimental Investigation. Journal of Materials in Civil Engineering, 32(11). doi:10.1061/(asce)mt.1943-5533.0003363.

Tajuddin, S. A. M., Rahman, J. A., Mohamed, R. M. S. R., & Al-Gheethi, A. (2021). Physical Simulation for Effect Seasons and Fertilizer on Solidified Fabric Peat Soil; A Soil Column Model Study. IOP Conference Series: Materials Science and Engineering, 1144(1), 012054. doi:10.1088/1757-899x/1144/1/012054.

Yusof, Z. M. (2020). Strength Characteristics of Pond Ash - Hydrated Lime Admixture Treated Peat Soil. IOP Conference Series: Materials Science and Engineering, 932(1), 12044. doi:10.1088/1757-899X/932/1/012044.

Zainuddin, A. N., Mukri, M., & Sidek, N. (2022). Investigation on Soil Strength and Microstructure of Palm Oil Boiler Ash with Sodium Hydroxide and Sodium Silicate as Alkaline Solution. International Journal of Sustainable Construction Engineering and Technology, 13(1), 57–67. doi:10.30880/ijscet.2022.13.01.006.

Abdeldjouad, L., Asadi, A., Nahazanan, H., Huat, B. B. K., Dheyab, W., & Elkhebu, A. G. (2019). Effect of Clay Content on Soil Stabilization with Alkaline Activation. International Journal of Geosynthetics and Ground Engineering, 5(1), 1–8. doi:10.1007/s40891-019-0157-y.

Pourakbar, S., Asadi, A., Huat, B. B. K., & Fasihnikoutalab, M. H. (2015). Soil stabilisation with alkali-activated agro-waste. Environmental Geotechnics, 2(6), 359–370. doi:10.1680/envgeo.15.00009.

Ahmad, A., Sutanto, M. H., Al-Bared, M. A. M., Harahap, I. S. H., Abad, S. V. A. N. K., & Khan, M. A. (2021). Physio-Chemical Properties, Consolidation, and Stabilization of Tropical Peat Soil Using Traditional Soil Additives — A State of the Art Literature Review. KSCE Journal of Civil Engineering, 25(10), 3662–3678. doi:10.1007/s12205-021-1247-7.

CT97-0351. (2000). Design guide soft soil stabilisation. Project No: BE 96-3177, EuroSoilStab, European Commission, Industrial and Materials Technologies Programme (Rite-EuRam III), Brussels, Belgium.

Janz, M., & Johansson, S.-E. (2002). The Function of Different Binding Agents in Deep Stabilisation: Report 9. Svensk Djupstabilisering, Swedish Deep Stabilization Research Centre, Linkoping, Sweden. Available online: https://www.sgi.se/globalassets/publikationer/svensk-djupstabilisering/sd-r9e.pdf (accessed on April 2023).

Tremblay, H., Lerouell, S., & Locat, J. (2001). Mechanical improvement and vertical yield stress prediction of clayey soils from Eastern Canada treated with lime or cement. Canadian Geotechnical Journal, 38(3), 567–579. doi:10.1139/cgj-38-3-567.

Clare, K. E., & Sherwood, P. T. (2007). The effect of organic matter on the setting of soil-cement mixtures. Journal of Applied Chemistry, 4(11), 625–630. doi:10.1002/jctb.5010041107.

Paul, A., & Hussain, M. (2020). Sustainable Use of GGBS and RHA as a Partial Replacement of Cement in the Stabilization of Indian Peat. International Journal of Geosynthetics and Ground Engineering, 6(1), 1-15. doi:10.1007/s40891-020-0185-7.

Lau, J., Biscontin, G., & Berti, D. (2023). Effects of biochar on cement-stabilised peat soil. Proceedings of the Institution of Civil Engineers: Ground Improvement, 176(2), 76–87. doi:10.1680/jgrim.19.00013.

Kolay, P. K., Aminur, M. R., Taib, S. N. L., & Zain, M. I. S. M. (2011). Stabilization of Tropical Peat Soil from Sarawak with Different Stabilizing Agents. Geotechnical and Geological Engineering, 29(6), 1135–1141. doi:10.1007/s10706-011-9441-x.

Sargent, P., Hughes, P. N., Rouainia, M., & White, M. L. (2013). The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Engineering Geology, 152(1), 96–108. doi:10.1016/j.enggeo.2012.10.013.

Karin, A., Johansson, S. E., & Andersson, R. (2002). Stabilization of Organic Soils by Cement and Puzzolanic Reactions Report 3. Svensk Djupstabilisering, Swedish Deep Stabilization Research Centre, Linkoping, Sweden. Available online: http://www.swedgeo.se/sd/pdf/SD-R3E.pdf. (accessed on May 2023).

Khanday, S. A., Hussain, M., & Das, A. K. (2021). A Review on Chemical Stabilization of Peat. Geotechnical and Geological Engineering, 39(8), 5429–5443. doi:10.1007/s10706-021-01857-1.

Hamada, H. M., Thomas, B. S., Yahaya, F. M., Muthusamy, K., Yang, J., Abdalla, J. A., & Hawileh, R. A. (2021). Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. Journal of Building Engineering, 40, 102286. doi:10.1016/j.jobe.2021.102286.

ASTM C618-19. (2022). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.

Alias Tudin, D. Z., Rizalman, A. N., & Asrah, H. (2018). Performance of Palm Oil Fuel Ash and Rice Husk Ash Based Geopolymer Mortar. E3S Web of Conferences, 65, 2011. doi:10.1051/e3sconf/20186502011.

Asrah, H., Mirasa, A. K., & Mannan, A. (2015). The performance of ultrafine palm oil fuel ash in suppressing the alkali silica reaction in mortar bar. International Journal of Engineering Applied Science, 2(9), 60-66.

Asrah, H., Mirasa, A. K., Bolong, N., Mannan, M. A., & Madi, M. (2017). Reduction of Alkali-Silica reaction expansion using Ultrafine Palm Oil Fuel Ash. Journal of Engineering and Applied Sciences, 12(19), 4820–4825. doi:10.3923/jeasci.2017.4820.4825.

Mashri, M. O. M., Megat Johari, M. A., Ahmad, Z. A., & Mijarsh, M. J. A. (2022). Influence of milling process of palm oil fuel ash on the properties of palm oil fuel ash-based alkali activated mortar. Case Studies in Construction Materials, 16, 857. doi:10.1016/j.cscm.2021.e00857.

Tambichik, M. A., Samad, A. A. A., Mohamad, N., Mohd Ali, A. Z., Othuman Mydin, M. A., Mohd Bosro, M. Z., & Iman, M. A. (2018). Effect of combining Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as partial cement replacement to the compressive strength of concrete. International Journal of Integrated Engineering, 10(8), 61–67. doi:10.30880/ijie.2018.10.08.004.

Bashar, I. I., Alengaram, U. J., & Jumaat, M. Z. (2022). Enunciation of embryonic palm oil clinker based geopolymer concrete and its engineering properties. Construction and Building Materials, 318, 125975. doi:10.1016/j.conbuildmat.2021.125975.

Tonduba, Y. W., Mirasa, A. K., & Asrah, H. (2019). Applicability of Palm Oil Fuel Ash in Interlocking Compressed Earth Brick - A Preliminary Assessment. Journal of Physics: Conference Series, 1358(1), 12027. doi:10.1088/1742-6596/1358/1/012027.

Tonduba, Y. W., Mirasa, A. K., & Asrah, H. (2021). Utilization of Ultrafine Palm Oil Fuel Ash in Interlocking Compressed Earth Brick. International Journal of GEOMATE, 21(87), 70–78. doi:10.21660/2021.87.j2245.

Kwek, S. Y., Awang, H., & Cheah, C. B. (2021). Influence of liquid-to-solid and alkaline activator (Sodium silicate to sodium hydroxide) ratios on fresh and hardened properties of alkali-activated palm oil fuel ash geopolymer. Materials, 14(15), 4253. doi:10.3390/ma14154253.

Runyut, D. A., Robert, S., Ismail, I., Ahmadi, R., & Abdul Samat, N. A. S. Binti. (2018). Microstructure and Mechanical Characterization of Alkali-Activated Palm Oil Fuel Ash. Journal of Materials in Civil Engineering, 30(7), 4018119. doi:10.1061/(asce)mt.1943-5533.0002303.

Salih, M. A., Abang Ali, A. A., & Farzadnia, N. (2014). Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Construction and Building Materials, 65, 592–603. doi:10.1016/j.conbuildmat.2014.05.031.

Yahya, Z., Abdullah, M. M. A. B., Hussin, K., Ismail, K. N., Razak, R. A., & Sandu, A. V. (2015). Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials, 8(5), 2227–2242. doi:10.3390/ma8052227.

Salih, M. A., Farzadnia, N., Abang Ali, A. A., & Demirboga, R. (2015). Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature. Construction and Building Materials, 93, 289–300. doi:10.1016/j.conbuildmat.2015.05.119.

Davidovits, J. (2020). Geopolymer Chemistry and Applications (5th Ed.). Geopolymer Institute, Saint-Quentin, France.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: the current state of the art. Journal of materials science, 42, 2917-2933. doi:10.1007/s10853-006-0637-z.

Amiri, A., Toufigh, M. M., & Toufigh, V. (2022). Stabilisation of organic soils with alkali-activated binders. International Journal of Pavement Engineering, 1–15. doi:10.1080/10298436.2022.2104844.

Wattez, T., Patapy, C., Frouin, L., Waligora, J., & Cyr, M. (2021). Interactions between alkali-activated grounds granulated blastfurnace slag and organic matter in soil stabilization/solidification. Transportation Geotechnics, 26, 100412. doi:10.1016/j.trgeo.2020.100412.

Mavroulidou, M., Gray, C., Gunn, M. J., & Pantoja-Muñoz, L. (2022). A Study of Innovative Alkali-Activated Binders for Soil Stabilisation in the Context of Engineering Sustainability and Circular Economy. Circular Economy and Sustainability, 2(4), 1627–1651. doi:10.1007/s43615-021-00112-2.

Abdullah, H. H. (2020). An experimental investigation on stabilisation of clay soils with fly-ash based geopolymer. Ph.D. Thesis, University of Curtin, Perth, Australia.

Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 19–47, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781782422884.1.19.

Abdullah, H. H., Shahin, M. A., & Walske, M. L. (2020). Review of fly-ash-based geopolymers for soil stabilisation with special reference to clay. Geosciences (Switzerland), 10(7), 1–17. doi:10.3390/geosciences10070249.

Zhang, D. W., Sun, X. M., Zhao, K. F., Xu, Z. Y., & Li, H. (2022). An application of alkali-activated fly-ash materials with low-compressive strength: Thermal stability at elevated temperatures. Journal of Building Engineering, 61. doi:10.1016/j.jobe.2022.105256.

Aldawsari, S., Kampmann, R., Harnisch, J., & Rohde, C. (2022). Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review. Materials, 15(3), 1–25. doi:10.3390/ma15030876.

Abu Talib, M. K., & Noriyuki, Y. (2017). Highly Organic Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA). MATEC Web of Conferences, 103, 1–8. doi:10.1051/matecconf/201710307013.

Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. doi:10.1007/BF01912193.

Noor Azline, M. N., Abd Aziz, F. N. A., & Suleiman Juma, A. (2015). Effect of Ground Granulated Blast Furnace Slag on Compressive Strength of POFA Blended Concrete. Applied Mechanics and Materials, 802, 142–148. doi:10.4028/www.scientific.net/amm.802.142.

Athira, V. S., Charitha, V., Athira, G., & Bahurudeen, A. (2021). Agro-waste ash based alkali-activated binder: Cleaner production of zero cement concrete for construction. Journal of Cleaner Production, 286, 125429. doi:10.1016/j.jclepro.2020.125429.

Qaidi, S., Najm, H. M., Abed, S. M., Ahmed, H. U., Al Dughaishi, H., Al Lawati, J., Sabri, M. M., Alkhatib, F., & Milad, A. (2022). Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis. Materials, 15(20), 7098. doi:10.3390/ma15207098.

Abdullah, H. H., Shahin, M. A., Walske, M. L., & Karrech, A. (2020). Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization. Canadian Geotechnical Journal, 57(9), 1356–1368. doi:10.1139/cgj-2019-0215.

Dheyab, W., Ismael, Z. T., Hussein, M. A., & Huat, B. B. K. (2019). Soil stabilization with geopolymers for low cost and environmentally friendly construction. International Journal of GEOMATE, 17(63), 271–280. doi:10.21660/2019.63.8159.

Khasib, I. A., Daud, N. N. N., & Nasir, N. A. M. (2021). Strength development and microstructural behavior of soils stabilized with palm oil fuel ash (POFA)-based geopolymer. Applied Sciences (Switzerland), 11(8), 3572. doi:10.3390/app11083572.

Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials and Design, 56, 833–841. doi:10.1016/j.matdes.2013.11.080.

Salih, M. A., Farzadnia, N., Abang Ali, A. A., & Demirboga, R. (2015). Effect of different curing temperatures on alkali activated palm oil fuel ash paste. Construction and Building Materials, 94, 116–125. doi:10.1016/j.conbuildmat.2015.06.052.

Cristelo, N., Glendinning, S., Fernandes, L., & Pinto, A. T. (2013). Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotechnica, 8(4), 395–405. doi:10.1007/s11440-012-0200-9.

Wastiels, J., Wu, X., Faignet, S., & Patfoort, G. (1994). Mineral polymer based on fly ash. The Journal of Resource Management and Technology, 22(3), 135–141.

San Nicolas, R. V. R., Walkley, B., & van Deventer, J. S. J. (2017). Fly ash-based geopolymer chemistry and behavior. Coal Combustion Products (CCP’s), 185–214, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-100945-1.00007-1.

Thomas, B. S., Kumar, S., & Arel, H. S. (2017). Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renewable and Sustainable Energy Reviews, 80, 550–561. doi:10.1016/j.rser.2017.05.128.

Farhan, K. Z., Johari, M. A. M., & Demirboğa, R. (2020). Assessment of important parameters involved in the synthesis of geopolymer composites: A review. Construction and Building Materials, 264, 120276. doi:10.1016/j.conbuildmat.2020.120276.

Abdila, S. R., Abdullah, M. M. A. B., Ahmad, R., Rahim, S. Z. A., Rychta, M., Wnuk, I., Nabiałek, M., Muskalski, K., Tahir, M. F. M., Syafwandi, Isradi, M., & Gucwa, M. (2021). Evaluation on the mechanical properties of ground granulated blast slag (GGBS) and fly ash stabilized soil via geopolymer process. Materials, 14(11). doi:10.3390/ma14112833.

Chen, K., Wu, D., Zhang, Z., Pan, C., Shen, X., Xia, L., & Zang, J. (2022). Modeling and optimization of fly ash–slag-based geopolymer using response surface method and its application in soft soil stabilization. Construction and Building Materials, 315, 125723. doi:10.1016/j.conbuildmat.2021.125723.

Sukprasert, S., Hoy, M., Horpibulsuk, S., Arulrajah, A., Rashid, A. S. A., & Nazir, R. (2021). Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications. Road Materials and Pavement Design, 22(2), 357–371. doi:10.1080/14680629.2019.1621190.

Tyagi, A., & Soni, D. K. (2019). Effects of Granulated Ground Blast Furnace Slag and Fly Ash on Stabilization of Soil. Recycled Waste Materials. Lecture Notes in Civil Engineering, 32, Springer, Singapore. doi:10.1007/978-981-13-7017-5_9.

Abdullah, H. H., Shahin, M. A., & Sarker, P. (2017). Stabilisation of Clay with Fly-Ash Geopolymer Incorporating GGBFS. World Congress on Civil, Structural, and Environmental Engineering. doi:10.11159/icgre17.141.

Arulrajah, A., Yaghoubi, M., Disfani, M. M., Horpibulsuk, S., Bo, M. W., & Leong, M. (2018). Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 58(6), 1358–1370. doi:10.1016/j.sandf.2018.07.005.

Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261–1277. doi:10.1016/j.mineng.2007.07.011.

Panagiotopoulou, C., Kontori, E., Perraki, T., & Kakali, G. (2007). Dissolution of aluminosilicate minerals and by-products in alkaline media. Journal of Materials Science, 42(9), 2967–2973. doi:10.1007/s10853-006-0531-8.

Hardjito, D. (2005). “Studies on Fly Ash-Based Geopolymer Concrete. Ph.D. Thesis, Curtin University of Technology, Perth, Australia.

Abdullah, H. H., & Shahin, M. A. (2019). Strength Characteristics of Clay Stabilized with Fly-ash Based Geopolymer Incorporating Granulated Slag. Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering. doi:10.11159/icgre19.139.

Arulrajah, A., Kua, T.-A., Phetchuay, C., Horpibulsuk, S., Mahghoolpilehrood, F., & Disfani, M. M. (2016). Spent Coffee Grounds–Fly Ash Geopolymer Used as an Embankment Structural Fill Material. Journal of Materials in Civil Engineering, 28(5), 4015197. doi:10.1061/(asce)mt.1943-5533.0001496.

Kwad, N. F., Abdulkareem, A. H., & Ahmed, T. M. (2020). The Effect of Fly Ash Based Geopolymer on the Strength of Problematic Subgrade Soil with High CaO Content. Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9. Lecture Notes in Civil Engineering, 76, Springer, Cham, Switzerland. doi:10.1007/978-3-030-48679-2_51.

Bhavita Chowdary, V., Ramanamurty, V., & Pillai, R. J. (2021). Experimental evaluation of strength and durability characteristics of geopolymer stabilised soft soil for deep mixing applications. Innovative Infrastructure Solutions, 6(1), 1-10. doi:10.1007/s41062-020-00407-7.

ASTM C989-09. (2009). Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International, Pennsylvania, United States.

ACI 233R-17. (2017). Guide to the Use of Slag Cement in Concrete and Mortar. American Concrete Institute (ACI), Michigan, United States.

Ghosh, K., & Ghosh, P. (2020). Alkali Activated Fly Ash: Blast Furnace Slag Composites. CRC Press, Boca Raton, United States. doi:10.1201/9781003082460.

Manjunath, R., & Narasimhan, M. C. (2020). Alkali-activated concrete systems: a state of art. New Materials in Civil Engineering, 459–491, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-818961-0.00013-2.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-017


  • There are currently no refbacks.

Copyright (c) 2023 Adriana Erica Amaludin, Hidayati Asrah, Habib M. Mohamad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.