Effective Use of Sacrificial Zinc Anode as a Suitable Repair Method for Severely Damaged RC Members Due to Chloride Attack

Pinta Astuti, Rahmita Sari Rafdinal, Daisuke Yamamoto, Volana Andriamisaharimanana, Hidenori Hamada


In many cases, the repair strategy by using sacrificial anodes for cathodic protection in real RC structures requires additional zinc anodes after several years due to the decreasing protective area. This experimental study evaluates the effectiveness of time lag application of sacrificial anode cathodic protection applied to RC beam specimens that deteriorated severely due to chloride attack. In the experiment, sacrificial anodes and cathodic protection (SACP) were applied to 41-year-old RC beam specimens exposed to natural marine environments in which the embedded steel bars were significantly corroded. The repair work was performed in three stages. Instant-off and rest potential tests of steel bars were conducted periodically to demonstrate the time-dependent depolarization value. In the first stage, a polymer-modified mortar as a patch repair material was cast to replace the concrete in the middle tensile part with small sacrificial anodes embedded in the mortar. After the protective current reaches an equilibrium state, the sacrificial anodes are disconnected from the steel bars for a year, defined as the second stage. During the one year in the second stage, the steel bar in the patch repair area remained passive, without any sign of corrosion. As for the third stage, additional sacrificial anodes were installed in the existing concrete part to protect the steel in it. From one year of observation after applying sacrificial anodes to old concrete parts, the time lag SACP application of both in patch and non-patch repair parts was clarified to be effective in stopping the corrosion of steel bar in both parts until 20–30 years based on the service life prediction.


Doi: 10.28991/CEJ-2022-08-07-015

Full Text: PDF


Patch Repair; Sacrificial Zinc Anode; Service Life, Steel Corrosion; Time Lag Cathodic Protection.


Yodsudjai, W., & Rakvanich, S. (2020). Experimental study on anode life and effective distance of sacrificial cathodic protection in reinforced concrete. Engineering Journal, 24(6), 159–169. doi:10.4186/ej.2020.24.6.159.

Babaee, M., Khan, M. S. H., & Castel, A. (2018). Passivity of embedded reinforcement in carbonated low-calcium fly ash-based geopolymer concrete. Cement and Concrete Composites, 85, 32–43. doi:10.1016/j.cemconcomp.2017.10.001.

Poupard, O., L’Hostis, V., Catinaud, S., & Petre-Lazar, I. (2006). Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment. Cement and Concrete Research, 36(3), 504–520. doi:10.1016/j.cemconres.2005.11.004.

Glass, G. K., & Buenfeld, N. R. (1997). The presentation of the chloride threshold level for corrosion of steel in concrete. Corrosion Science, 39(5), 1001–1013. doi:10.1016/S0010-938X(97)00009-7.

Khan, M. U., Ahmad, S., & Al-Gahtani, H. J. (2017). Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time. International Journal of Corrosion, 2017, 1–9. doi:10.1155/2017/5819202.

Russo, N., Gastaldi, M., Schiavi, L., Strini, A., & Lollini, F. (2022). Chloride penetration resistance in sound and micro-cracked concretes through different experimental techniques. Construction and Building Materials, 343, 128098. doi:10.1016/j.conbuildmat.2022.128098.

Ranjith, A., Balaji Rao, K., & Manjunath, K. (2016). Evaluating the effect of corrosion on service life prediction of RC structures – A parametric study. International Journal of Sustainable Built Environment, 5(2), 587–603. doi:10.1016/j.ijsbe.2016.07.001.

Li, X., Khademi, F., Liu, Y., Akbari, M., Wang, C., Bond, P. L., Keller, J., & Jiang, G. (2019). Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. Journal of Environmental Management, 234, 431–439. doi:10.1016/j.jenvman.2018.12.098.

Bao, J., Zheng, R., Wei, J., Zhang, P., Xue, S., & Liu, Z. (2022). Numerical and experimental investigation of coupled capillary suction and chloride penetration in unsaturated concrete under cyclic drying-wetting condition. Journal of Building Engineering, 51, 104273. doi:10.1016/j.jobe.2022.104273.

Astuti, P., Kamarulzaman, K., & Hamada, H. (2021). Non-Destructive Investigation of A 44-Year-Old RC Structure Exposed to Actual Marine Tidal Environments Using Electrochemical Methods. International Journal of Integrated Engineering, 13(3), 148–157. doi:10.30880/ijie.2021.13.03.018.

Astuti, P., Rafdinal, R. S., Mahasiripan, A., Hamada, H., Sagawa, Y., & Yamamoto, D. (2018). Potential development of sacrificial anode cathodic protection applied for severely damaged RC beams aged 44 years. Journal of Thailand Concrete Association, 6(2), 24-31.

Hu, J. Y., Zhang, S. S., Chen, E., & Li, W. G. (2022). A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construction and Building Materials, 325, 126718. doi:10.1016/j.conbuildmat.2022.126718.

Cheng, X., Xia, J., Wu, R. J., Jin, W. Liang, & Pan, C. gen. (2022). Optimisation of sacrificial anode cathodic protection system in chloride-contaminated reinforced concrete structure. Journal of Building Engineering, 45, 103515. doi:10.1016/j.jobe.2021.103515.

Pedeferri, P. (1996). Cathodic protection and cathodic prevention. Construction and Building Materials, 10(5), 391–402. doi:10.1016/0950-0618(95)00017-8.

Van Belleghem, B., Maes, M., & Soetens, T. (2021). Throwing power and service life of galvanic cathodic protection with embedded discrete anodes for steel reinforcement in chloride contaminated concrete. Construction and Building Materials, 310, 125187. doi:10.1016/j.conbuildmat.2021.125187.

Su, M., Wei, L., Zhu, J.-H., Ueda, T., Guo, G., & Xing, F. (2019). Combined Impressed Current Cathodic Protection and FRCM Strengthening for Corrosion-Prone Concrete Structures. Journal of Composites for Construction, 23(4). doi:10.1061/(asce)cc.1943-5614.0000949.

Zhu, J.-H., Wang, Z., Su, M., Ueda, T., & Xing, F. (2020). C-FRCM Jacket Confinement for RC Columns under Impressed Current Cathodic Protection. Journal of Composites for Construction, 24(2). doi:10.1061/(asce)cc.1943-5614.0001006.

Zhou, Y., Zheng, Y., Sui, L., Hu, B., & Huang, X. (2020). Study on the flexural performance of hybrid-reinforced concrete beams with a new cathodic protection system subjected to corrosion. Materials, 13(1), 234. doi:10.3390/ma13010234.

Jeong, J. A., Jin, C. K., & Chung, W. S. (2012). Tidal water effect on the hybrid cathodic protection systems for marine concrete structures. Journal of Advanced Concrete Technology, 10(12), 389–394. doi:10.3151/jact.10.389.

Mao, J., Xu, J., Zhang, J., Wu, K., He, J., & Fan, W. (2022). Recycling methodology of chloride-attacked concrete based on electrochemical treatment. Journal of Cleaner Production, 340, 130822. doi:10.1016/j.jclepro.2022.130822.

Jeong, J. A., & Jin, C. K. (2014). Experimental studies of effectiveness of hybrid cathodic protection system on the steel in concrete. Science of Advanced Materials, 6(10), 2165–2170. doi:10.1166/sam.2014.2061.

The Stationery office. (1990). Design Manual for Road and Bridges, Inspection and repair of concrete highway structures departmental standard, Section 3, Vol. 3. Highways England publisher, The Stationery office (TSO), Guilford, United Kingdom.

Stambaugh, N. D., Bergman, T. L., & Srubar, W. V. (2018). Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Construction and Building Materials, 161, 236–245. doi:10.1016/j.conbuildmat.2017.11.084.

Dhouibi, L., Triki, E., Raharinaivo, A., Trabanelli, G., & Zucchi, F. (2000). Electrochemical methods for evaluating inhibitors of steel corrosion in concrete. British Corrosion Journal, 35(2), 146–149. doi:10.1179/000705900101501182.

Byrne, A., Holmes, N., & Norton, B.. (2016). State-of-the-art review of cathodic protection for reinforced concrete structures. Magazine of Concrete Research, 68(13), 664–677. doi:10.1680/jmacr.15.00083.

De Rincón, O. T., Torres-Acosta, A., Sagüés, A., & Martinez-Madrid, M. (2018). Galvanic anodes for reinforced concrete structures: A review. Corrosion, 74(6), 715–723. doi:10.5006/2613.

Al-Negheimish, A., Hussain, R. R., Alhozaimy, A., & Singh, D. D. N. (2021). Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment. Construction and Building Materials, 274, 121921. doi:10.1016/j.conbuildmat.2020.121921.

Kamde, D. K., Manickam, K., Pillai, R. G., & Sergi, G. (2021). Long-term performance of galvanic anodes for the protection of steel reinforced concrete structures. Journal of Building Engineering, 42, 103049. doi:10.1016/j.jobe.2021.103049.

Khomwan, N., & Mungsantisuk, P. (2019). Startup Thailand: A new innovative sacrificial anode for reinforced concrete structures. Engineering Journal, 23(4), 235–261. doi:10.4186/ej.2019.23.4.235.

Astuti, P., Kamarulzaman, K., Rafdinal, R. S., Hamada, H., Sagawa, Y., & Yamamoto, D. (2020). Influence of Rust Removal Process on the Effectiveness of Sacrificial Anode Cathodic Protection in Repair Concrete. IOP Conference Series: Materials Science and Engineering, 849(1), 12088. doi:10.1088/1757-899X/849/1/012088.

Dacuan, C. N., Abellana, V. Y., & Canseco, H. A. R. (2021). Assessment and Evaluation of Blended Cement Using Bamboo Leaf Ash BLASH against Corrosion. Civil Engineering Journal, 7(6), 1015–1035. doi:10.28991/cej-2021-03091707.

Ali, M. S., Leyne, E., Saifuzzaman, M., & Mirza, M. S. (2018). An experimental study of electrochemical incompatibility between repaired patch concrete and existing old concrete. Construction and Building Materials, 174, 159–172. doi:10.1016/j.conbuildmat.2018.04.059.

Bertolini, L., & Redaelli, E. (2009). Throwing power of cathodic prevention applied by means of sacrificial anodes to partially submerged marine reinforced concrete piles: Results of numerical simulations. Corrosion Science, 51(9), 2218–2230. doi:10.1016/j.corsci.2009.06.012.

Alrwashdeh, S. S., Al-falahat Ala’a M., & Murtadha, T. K. (2022). Effect of Turbocharger Compression Ratio on Performance of the Spark-Ignition Internal Combustion Engine. Emerging Science Journal, 6(3), 482–492. doi:10.28991/esj-2022-06-03-04.

Zhang, K., Li, W., & Han, F. (2019). Performance deterioration mechanism and improvement techniques of asphalt mixture in salty and humid environment. Construction and Building Materials, 208, 749–757. doi:10.1016/j.conbuildmat.2019.03.061.

Balestra, C. E. T., Reichert, T. A., Pansera, W. A., & Savaris, G. (2020). Evaluation of chloride ion penetration through concrete surface electrical resistivity of field naturally degraded structures present in marine environment. Construction and Building Materials, 230, 116979. doi:10.1016/j.conbuildmat.2019.116979.

Wattanapornprom, R., Limtong, P., Ishida, T., Pansuk, W., & Pheinsusom, P. (2020). Airborne Chloride Intensity and Chloride Ion Penetration into Mortar Specimen in Thailand. Engineering Journal, 24(2), 87–100. doi:10.4186/ej.2020.24.2.87.

Alqahtani, M. F., Bajracharya, S., Katuri, K. P., Ali, M., Xu, J., Alarawi, M. S., & Saikaly, P. E. (2021). Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply. Science of the Total Environment, 766, 142668. doi:10.1016/j.scitotenv.2020.142668.

Sergi, G., Seneviratne, G., & Simpson, D. (2021). Monitoring results of galvanic anodes in steel reinforced concrete over 20 years. Construction and Building Materials, 269, 121309. doi:10.1016/j.conbuildmat.2020.121309.

Caronge, M. A., Hamada, H., Irmawaty, R., Sagawa, Y., & Yamamoto, D. (2015). Application of sacrificial point anode for prevention of steel corrosion in cracked concrete. Journal of Advanced Concrete Technology, 13(10), 465–478. doi:10.3151/jact.13.479.

Cheung, M.M.S., & Cao, C. (2013). Application of cathodic protection for controlling macrocell corrosion in chloride contaminated RC structures. Construction and Building Materials, 45, 199–207. doi:10.1016/j.conbuildmat.2013.04.010.

Hamada, H., Otsuki, N., & Haramo, M. (1988). Durabilities of concrete beams under marine environments exposed in port of Sakata and Kagoshima (after 10 yearsexposed). Technical Note of the Port and Airport Research Institute, 614, 3-43.

Yokota, H., Akiyama, T., Hamada, H., Mikami, A., & Fukute, T. (1999). Effect of degradation of concrete on mechanical properties of reinforced concrete beams exposed to marine environment (for 20 years in Sakata). Report of the Port and Airport Research Institute, 38(2).

Dasar, A., Hamada, H., Sagawa, Y., & Yamamoto, D. (2017). Deterioration progress and performance reduction of 40-year-old reinforced concrete beams in natural corrosion environments. Construction and Building Materials, 149, 690–704. doi:10.1016/j.conbuildmat.2017.05.162.

Astuti, P., Rafdinal, R. S., Hamada, H., Sagawa, Y., & Yamamoto, D. (2019). Application of sacrificial anode cathodic protection for partially repaired RC beams damaged by corrosion. Proceeding of 4th International Symposium on Concrete and Structures for next Generation (CSN2019), 284–291, 17-19 June, 2019, Kanazawa, Japan.

Trocónis de Rincón, O., Hernández-López, Y., de Valle-Moreno, A., Torres-Acosta, A. A., Barrios, F., Montero, P., … Montero, J. R. (2008). Environmental influence on point anodes performance in reinforced concrete. Construction and Building Materials, 22(4), 494–503. doi:10.1016/j.conbuildmat.2006.11.014.

ISO EN-12696. (2016). Cathodic protection of steel in concrete. British Standards Institute, London, United Kingdom.

Wang, Y., Fang, G., Ding, W., Han, N., Xing, F., & Dong, B. (2015). Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete. Scientific Reports, 5(1), 18484. doi:10.1038/srep18484.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-07-015


  • There are currently no refbacks.

Copyright (c) 2022 Pinta Astuti, Rahmita Sari Rafdinal, Daisuke Yamamoto, Volana Andriamisaharimanana, Hidenori Hamada

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.