Dam-Break Energy of Porous Structure for Scour Countermeasure at Bridge Abutment

Ira Widyastuti, M. Arsyad Thaha, Rita Tahir Lopa, Mukhsan Putra Hatta


The aim of the study is to determine the structure for energy absorption in order to countermeasure the scouring on the bridge abutment. Consider a porous structure for energy absorption, which can reduce flow velocity and depth of scouring due to its porosity. The energy absorber plate demonstrated in triangular shape with several porous as submerged barrier. The investigation was conducted in laboratory and placed the abutment in the middle of the channel with a distance of 3Lb, 5Lb, 7Lb and 9Lb. The plate area consists of 0% (MP1), 5% (MP2), and 10% (MP3). The scour depth measurement (ds) is carried out at 6 crucial points in the abutment area. Comparisons between experimental measurements and a numerical prediction model are presented. The experimental results show that the percentage of frictional velocity in the inhibition area for each pore opening before the obstacle, 31.42% (decreasing), - 9.27% (increasing), and -32.92% (increasing), respectively. Furthermore, the optimum position of the porous energy absorber at 9Lb to the abutment. The magnitude decreases of scour depth obtained from MP2. It can be concluded that the placement of energy absorbers can lead to damping forces. It also found that the porous structures could be beneficial for motion damping and absorber of the scouring.


Doi: 10.28991/CEJ-2022-08-12-019

Full Text: PDF


Scouring; Energy Absorber; Velocity; River; Reynolds Number; Froude Number.


Dargahi, B. (1990). Controlling Mechanism of Local Scouring. Journal of Hydraulic Engineering, 116(10), 1197–1214. doi:10.1061/(asce)0733-9429(1990)116:10(1197).

Llewellyn, R. J., Yick, S. K., & Dolman, K. F. (2004). Scouring erosion resistance of metallic materials used in slurry pump service. Wear, 256(6), 592–599. doi:10.1016/j.wear.2003.10.002.

Fan, Z., Zhang, B., Liu, Y., Suo, T., Xu, P., & Zhang, J. (2021). Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption. Polymer Testing, 93, 106917. doi:10.1016/j.polymertesting.2020.106917.

Rinaldi, B. Y. (2001). Physical Model of Scour Control around Bridge Abutments. Forum Teknik Sipil, X, 139–149. (In Indonesian).

Shahsavari, H., Heidarpour, M., & Mohammadalizadeh, M. (2017). Simultaneous effect of collar and roughness on reducing and controlling the local scour around bridge abutment. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(2), 491–499. doi:10.11118/actaun201765020491.

Abdurrosyid, J., & Fatchan, A. K. (2007). Scour Around the Abutments and Its Control in Existing Transport Conditions for Multiple Channels. Dinamika Teknik Sipil, 7(1), 20–29. (In Indonesian).

Mackay, E., Shi, W., Qiao, D., Gabl, R., Davey, T., Ning, D., & Johanning, L. (2021). Numerical and experimental modelling of wave interaction with fixed and floating porous cylinders. Ocean Engineering, 242, 110118. doi:10.1016/j.oceaneng.2021.110118.

Mackay, E., Liang, H., & Johanning, L. (2021). A BEM model for wave forces on structures with thin porous elements. Journal of Fluids and Structures, 102, 103246. doi:10.1016/j.jfluidstructs.2021.103246.

Krishnendu, P., & Balaji, R. (2020). Hydrodynamic performance analysis of an integrated wave energy absorption system. Ocean Engineering, 195, 106499. doi:10.1016/j.oceaneng.2019.106499.

Amir, M. U. A. R., Hashmi, H. N., Baloch, M., Ehsan, M. A., Muhammad, U., & Ali, Z. (2018). Experimental investigation of channel bank vegetation on scouring characteristics around a wing wall abutment. Technical Journal, 23(01), 15-21.

Zhao, E., Dong, Y., Tang, Y., & Sun, J. (2021). Numerical investigation of hydrodynamic characteristics and local scour mechanism around submarine pipelines under joint effect of solitary waves and currents. Ocean Engineering, 222, 108553. doi:10.1016/j.oceaneng.2020.108553.

Pu, J. H., Hussain, A., Guo, Y. kun, Vardakastanis, N., Hanmaiahgari, P. R., & Lam, D. (2019). Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction. Water Science and Engineering, 12(2), 121–128. doi:10.1016/j.wse.2019.06.003.

Radice, A., & Davari, V. (2014). Roughening Elements as Abutment Scour Countermeasures. Journal of Hydraulic Engineering, 140(8), 6014014. doi:10.1061/(asce)hy.1943-7900.0000892.

Juez, C., & Navas-Montilla, A. (2022). Numerical characterization of seiche waves energy potential in river bank lateral embayments. Renewable Energy, 186, 143–156. doi:10.1016/j.renene.2021.12.125.

Wilson, R. I., Friedrich, H., & Stevens, C. (2018). Flow structure of unconfined turbidity currents interacting with an obstacle. Environmental Fluid Mechanics, 18(6), 1571–1594. doi:10.1007/s10652-018-9631-7.

Oehy, C. D., & Schleiss, A. J. (2007). Control of turbidity currents in reservoirs by solid and permeable obstacles. Journal of Hydraulic Engineering, 133(6), 637-648. doi:10.1061/(ASCE)0733-9429(2007)133:6(637).

Hassan, Z. F., Karim, I. R., & Al-Shukur, A. H. K. (2020). Effect of interaction between bridge piers on local scouring in cohesive soils. Civil Engineering Journal (Iran), 6(4), 659–669. doi:10.28991/cej-2020-03091498.

Li, H., Barkdoll, B., & Kuhnle, R. (2005). Bridge Abutment Collar as a Scour Countermeasure. Impacts of Global Climate Change. doi:10.1061/40792(173)395.

Ansari, S. A., Kothyari, U. C., & Ranga Raju, K. G. (2002). Influence of cohesion on scour around bridge piers. Journal of Hydraulic Research, 40(6), 717–729. doi:10.1080/00221680209499918.

Igarashi, T. (1981). Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem - 1. Bulletin of the JSME, 24(188), 323–331. doi:10.1299/jsme1958.24.323.

Gao, Yangyang, Stephane Etienne, Xikun Wang, and Soon Keat Tan. “Experimental Study on the Flow around Two Tandem Cylinders with Unequal Diameters.” Journal of Ocean University of China 13, no. 5 (July 9, 2014): 761–770. doi:10.1007/s11802-014-2377-z.

Tafarojnoruz, Ali, Roberto Gaudio, and Francesco Calomino. “Bridge Pier Scour Mitigation under Steady and Unsteady Flow Conditions.” Acta Geophysica 60, no. 4 (April 28, 2012): 1076–1097. doi:10.2478/s11600-012-0040-x.

Briaud, Jean-Louis. “Scour Depth at Bridges: Method Including Soil Properties. I: Maximum Scour Depth Prediction.” Journal of Geotechnical and Geoenvironmental Engineering 141, no. 2 (February 2015): 04014104. doi:10.1061/(asce)gt.1943-5606.0001222.

Yaghoubi, S., Afshin, H., Firoozabadi, B., & Farizan, A. (2017). Experimental Investigation of the Effect of Inlet Concentration on the Behavior of Turbidity Currents in the Presence of Two Consecutive Obstacles. Journal of Waterway, Port, Coastal, and Ocean Engineering, 143(2). doi:10.1061/(asce)ww.1943-5460.0000358.

Kordnaeij, M., Asghari Pari, S. A., Sajjadi, S. M., & Shafai Bajestan, M. (2017). Experimentally Comparisons of the Effect of Porous Sheets and Porous Obstacles in Controlling Turbidity Current. Water and Soil Science, 27(1), 43-54.

Meiburg, E., & Kneller, B. (2010). Turbidity Currents and Their Deposits. Annual Review of Fluid Mechanics, 42(1), 135–156. doi:10.1146/annurev-fluid-121108-145618.

Asghari Pari, S. A., Kashefipour, S. M., & Ghomeshi, M. (2017). An experimental study to determine the obstacle height required for the control of subcritical and supercritical gravity currents. European Journal of Environmental and Civil Engineering, 21(9), 1080–1092. doi:10.1080/19648189.2016.1144537.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-019


  • There are currently no refbacks.

Copyright (c) 2022 ira widyastuti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.