Efficiency of Friction Pendulum Bearings in Vertically Irregular Structures Subjected to Various Types of Earthquakes
Downloads
Doi: 10.28991/CEJ-2022-08-09-05
Full Text: PDF
[2] Inel, M., Ozmen, H. B., & Bilgin, H. (2008). Re-evaluation of building damage during recent earthquakes in Turkey. Engineering Structures, 30(2), 412–427. doi:10.1016/j.engstruct.2007.04.012.
[3] Kim, S. J., & Elnashai, A. S. (2009). Characterization of shaking intensity distribution and seismic assessment of RC buildings for the Kashmir (Pakistan) earthquake of October 2005. Engineering Structures, 31(12), 2998–3015. doi:10.1016/j.engstruct.2009.08.001.
[4] Varadharajan, S., Sehgal, V. K., & Saini, B. (2012). Review of different structural irregularities in buildings. Journal of Structural Engineering (India), 39(5), 538–563.
[5] Parulekar, Y. M., & Reddy, G. R. (2009). Passive response control systems for seismic response reduction: A state-of-the-art review. International Journal of Structural Stability and Dynamics, 9(1), 151–177. doi:10.1142/S0219455409002965.
[6] Kangda, M. Z., & Bakre, S. (2018). The Effect of LRB Parameters on Structural Responses for Blast and Seismic Loads. Arabian Journal for Science and Engineering, 43(4), 1761–1776. doi:10.1007/s13369-017-2732-7.
[7] Rong, Q. (2020). Optimum parameters of a five-story building supported by lead-rubber bearings under near-fault ground motions. Journal of Low Frequency Noise Vibration and Active Control, 39(1), 98–113. doi:10.1177/1461348419845829.
[8] Mazza, F., & Labernarda, R. (2018). Effects of nonlinear modelling of the base-isolation system on the seismic analysis of R.C. buildings. Procedia Structural Integrity, 11, 226–233. doi:10.1016/j.prostr.2018.11.030.
[9] Hall, J. F., Heaton, T. H., Halling, M. W., & Wald, D. J. (1995). Near-Source Ground Motion and its Effects on Flexible Buildings. Earthquake Spectra, 11(4), 569–605. doi:10.1193/1.1585828.
[10] Mazza, F., & Vulcano, A. (2012). Effects of near-fault ground motions on the nonlinear dynamic response of base-isolated R.C. framed buildings. Earthquake Engineering and Structural Dynamics, 41(2), 211–232. doi:10.1002/eqe.1126.
[11] Mazza, F., & Mazza, M. (2016). Nonlinear seismic analysis of irregular R.C. framed buildings base-isolated with friction pendulum system under near-fault excitations. Soil Dynamics and Earthquake Engineering, 90, 299–312. doi:10.1016/j.soildyn.2016.08.028.
[12] Jangid, R. S., & Kelly, J. M. (2001). Base isolation for near-fault motions. Earthquake Engineering and Structural Dynamics, 30(5), 691–707. doi:10.1002/eqe.31.
[13] Mazza, F. (2018). Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes. Soil Dynamics and Earthquake Engineering, 108, 111–129. doi:10.1016/j.soildyn.2017.11.030.
[14] Mazza, F., Mazza, M., & Vulcano, A. (2018). Base-isolation systems for the seismic retrofitting of R.C. framed buildings with soft-storey subjected to near-fault earthquakes. Soil Dynamics and Earthquake Engineering, 109, 209–221. doi:10.1016/j.soildyn.2018.02.025.
[15] Sadashiva, V. K., MacRae, G. A., & Deam, B. L. (2009). Determination of structural irregularity limits - Mass irregularity example. Bulletin of the New Zealand Society for Earthquake Engineering, 42(4), 288–301. doi:10.5459/bnzsee.42.4.288-301.
[16] Michalis, F., Dimitrios, V., & Manolis, P. (2006). Evaluation of the influence of vertical irregularities on the seismic performance of a nine-storey steel frame. Earthquake Engineering & Structural Dynamics, 35(12), 1489–1509. doi:10.1002/eqe.591.
[17] ASCE/SEI 7-16. (2016). Minimum Design Loads For Buildings and Other Structures. American Society of Civil Engineering (ASCE), Reston, United States.
[18] Ghosh, R., & Debbarma, R. (2017). Performance evaluation of setback buildings with open ground storey on plain and sloping ground under earthquake loadings and mitigation of failure. International Journal of Advanced Structural Engineering, 9(2), 97–110. doi:10.1007/s40091-017-0151-3.
[19] Warn, G. P., & Ryan, K. L. (2012). A review of seismic isolation for buildings: Historical development and research needs. Buildings, 2(3), 300–325. doi:10.3390/buildings2030300.
[20] Constantinou, M., Mokha, A., & Reinhorn, A. (1990). Teflon Bearings in Base Isolation II: Modeling. Journal of Structural Engineering, 116(2), 455–474. doi:10.1061/(asce)0733-9445(1990)116:2(455).
[21] ACI committee 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Farmington Hills, United States.
[22] Applied Technology Council (ATC). (2017). Guidelines for Nonlinear Structural Analysis for Design of Buildings Part IIb–Reinforced Concrete Moment Frames. Applied Technology Council (ATC), Redwood, United States. doi:10.6028/NIST.GCR.17-917-46v2.
[23] Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress"Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(asce)0733-9445(1988)114:8(1804).
[24] Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons, Hoboken, United States.
[25] Kalantari, A., & Roohbakhsh, H. (2020). Expected seismic fragility of code-conforming RC moment resisting frames under twin seismic events. Journal of Building Engineering, 28, 101098. doi:10.1016/j.jobe.2019.101098.
[26] CSI. SAP2000 - Structural Software for Analysis and Design. Computers and Structures Inc., California, United States.
[27] Kitayama, S., & Constantinou, M. C. (2018). Seismic Performance of Buildings with Viscous Damping Systems Designed by the Procedures of ASCE/SEI 7-16. Journal of Structural Engineering, 144(6), 4018050. doi:10.1061/(asce)st.1943-541x.0002048.
[28] FEMA 451B. (2007). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures: Training and Instructional Materials. Federal Emergency Management Agency (FEMA), Washington, United States.
[29] Barmo, A., Mualla, I. H., & Hasan, H. T. (2015). The Behavior of Multi-Story Buildings Seismically Isolated System Hybrid Isolation (Friction, Rubber and with the Addition of Rotational Friction Dampers). Open Journal of Earthquake Research, 04(01), 1–13. doi:10.4236/ojer.2015.41001.
[30] Chen, X., & Xiong, J. (2022). Seismic resilient design with base isolation device using friction pendulum bearing and viscous damper. Soil Dynamics and Earthquake Engineering, 153, 107073. doi:10.1016/j.soildyn.2021.107073.
[31] Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. doi:10.1080/10408340500526766.
[32] Li, C., Chang, K., Cao, L., & Huang, Y. (2021). Performance of a nonlinear hybrid base isolation system under the ground motions. Soil Dynamics and Earthquake Engineering, 143, 106589. doi:10.1016/j.soildyn.2021.106589.
[33] Pérez-Rocha, L. E., Avilés-López, J., & Tena-Colunga, A. (2021). Base isolation for mid-rise buildings in presence of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 151, 106980. doi:10.1016/j.soildyn.2021.106980.
[34] Cheshmehkaboodi, N., & Guizani, L. (2021). On the influence of earthquakes and soil characteristics on seismic response and performance of isolated bridges. Arabian Journal of Geosciences, 14(5), 1–12. doi:10.1007/s12517-021-06451-6.
[35] Zhang, H., Liu, X., Li, H., & An, N. (2021). A comparative study on the effectiveness of bidirectional and tridirectional isolation systems used in large-scale single-layer lattice domes during earthquakes. Soil Dynamics and Earthquake Engineering, 141, 106488. doi:10.1016/j.soildyn.2020.106488.
[36] Usta, P. (2021). Investigation of a base-isolator system's effects on the seismic behavior of a historical structure. Buildings, 11(5), 217. doi:10.3390/buildings11050217.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.